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Introduction

Globally, 15% population is affected by knee osteoarthritis 
(OA), presenting as the major morbidity and leading cause 
of the functional disability.1 The probability of developing 
symptomatic knee OA in an entire lifetime is approximately 
45%.2 OA of the knee, the most common degenerative joint 
disorder, is characterized by synovial inflammation, sub-
chondral bony sclerosis and osteophyte formation. 
Biochemically, knee OA represents disequilibrium between 
rate of the cartilage degeneration and rate of the cartilage 
repair. When cartilage sustains any injury, then its limited 
intrinsic capacity to repair and regeneration results in the 
supervening of knee OA.3 The goals of knee OA manage-
ment are directed toward symptomatic pain relief along 
with the attainment of the functional quality of life. The 
treatment strategy ranges from conservative to surgical 
management with reparative and restorative techniques.

The robust development of technologies in regenerative 
orthopedics has opened the doors for various researchers 
for targeting the molecular pathogenesis of the disease and 
redirecting the pathogenesis toward cartilage regeneration. 

The emergence of cell-based therapies has paved the way 
for the usage of mesenchymal stem cells (MSCs) in carti-
lage disorders.4 MSCs work on the principle of paracrine 
effects with their anti-inflammatory, antimicrobial, analge-
sic, regenerating, immunomodulatory, and immune-evasive 
properties.4,5 Among all the available MSCs, bone marrow–
derived MSCs have been proved to have the higher carti-
lage regenerating potentiality than MSCs from adipose 
tissue or synovium.5 The various phases of clinical trials 
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Knee osteoarthritis is the leading cause of functional disability in adults. the goals of knee osteoarthritis management 
are directed toward symptomatic pain relief along with the attainment of the functional quality of life. the treatment 
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therapy in osteoarthritis. although regenerative therapies with MSC are being seen to hold a future in the management of 
osteoarthritis, extracellular vesicle–based technology holds the key to unlock the potential toward knee preservation and 
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exploration.
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demonstrated the therapeutic and safety aspects of the usage 
of MSC-based therapy in knee OA. These trials reported the 
functional improvements in terms of pain and joint func-
tion, as well as the quality of the cartilage regenerated dur-
ing the follow-up.5

Currently, global researchers are keen on their research 
on nanomedicine and targeted drug delivery. With a better 
understanding of the mechanism of action of MSCs, further 
research was directed toward the identification of the key 
regulatory mediators of their function. With the recognition 
of exosomes as the carriers of such critical mediators, a new 
gateway to cell-free therapeutics was laid down. Utilizing 
exosomes as a drug delivery tool is advantageous due to 
their naïve characteristics derived from the parent or host 
cells.6-8 Albeit exosomes contribute to the normal cellular 
homeostasis, their crucial role in intercellular signaling 
can be extrapolated to the pathobiology of the disease 
process.9-13 These exosomes act as a cell-free mediator 
modulating the natural course of the disease. These exo-
somes function by acting on tissue repair and regeneration, 
intracellular communication, bioenergetics, immunoregula-
tion, and tissue metabolism.14 This article renders insight 
into pathophysiology, diagnostic, and therapeutic role of 
exosomes in the knee OA highlighting the role of MSC-
derived exosomal therapy as a potential therapeutic avenue 
in the management of knee OA.

Exosomes

Despite a constant evolution in the categorization of these 
extracellular vesicles (EVs), based on the size of the EVs, 
exosomes are defined as a subcategory of EVs that are 
endosome derived lipid bilayered spherical vesicles of 40 to 
150 nm in size called small EVs (sEVs) distinguishing them 
from the apoptotic bodies and microvesicles as shown in 
Table 1.15,16 These sEVs have flotation density of 1.1 to 
1.18 g/mL and express markers such as ALIX, CD81, and 
TSG101.17 Almost all cells, tissues, and body fluids (plasma, 
urine, saliva, tears, gastrointestinal secretions, semen, and 
breast milk) secrete exosomes.18,19 Exosomal cargo carries 
an array of microbiomolecules that consists of proteins, lip-
ids, ribonucleic acid, and deoxyribonucleic acid from the 
secreting parent cells.20-22 Exosomes form as a result of (a) 

cell membrane involution to form endosomes, (b) inward 
sprouting of luminal budding into multivesicular bodies, 
and (c) fusion of multivesicular bodies and plasma mem-
brane and secreted into extracellular space.23 The biosyn-
thesis of exosomes is given in Fig. 1. Moreover, the 
characteristics and behavior of the exosomes closely relate 
to the parent cell of origin.24-26 Considering the suitable size 
and property of these exosomes with their established role 
in various pathobiological processes, exosomal therapy has 
become an inquisitive issue among various researchers 
across a variety of fields aiming to develop a natural engi-
neered defense system for combating the pathological pro-
cess at a cellular level.

Exosomes in the Pathophysiology of 
Knee OA

OA of the knee results due to the molecular interaction and 
cross-talks among the secreted pro-inflammatory cytokines 
and chemokines with cartilage, bone, tendon, infrapatellar 
fat pad, synovium, ligaments, and bursae around the knee 
joint. Subchondral bone (cortical bone beneath the articular 
cartilage) has an instrumental role in the natural course of 
the OA disease process. These subchondral bony changes 
occur due to the interaction between the paracrine media-
tors of bone and cartilage.27 The cytokines and chemokines 
released from the surrounding structures enhance the pro-
cess of degeneration of cartilage and degradation of carti-
laginous matrix materials and the induction of osteophytes 
due to interleukin-1β (IL-1β), IL-6, IL-10, tumor necrosis 
factor-α (TNF-α), and bone morphogenetic proteins 
(BMPs). In knee OA, the upregulation of pro-inflammatory 
cytokine expression and matrix metalloproteinase (MMP) 
expression occurs.28,29 The downregulation of levels of 
cyclooxygenase-2 (COX-2) and microsomal PGE syn-
thase-1 expression were observed, and eventually, the pro-
duction of prostaglandin E2 (PGE2) was reduced.30,31 The 
role of exosomes in the pathophysiology of knee OA is 
shown in Fig. 2.

Under physiological conditions, exosomes exhibit very 
low immunogenicity and cross physiological blood-brain 
barrier.32 Exosomal cargoes are protected from immuno-
logical cells and circulating digestive enzymes due to their 

Table 1. Forms of extracellular Vesicles (eVs).

Form of eVs Size range (nm) Origin Markers lipids

apoptotic bodies 1-5000 Outpouching of apoptotic cell 
membrane

CD133; integrins; grP94 ??

Microvesicles 50-1000 Outpouching of cell membrane 
from the parent cell of origin

CD40; CD62; integrins Phosphatidylserine

exosomes 50-150 luminal budding into 
multivesicular bodies

CD63; CD9; aliX; tSg101; 
tetraspanins; MHC1; HSP70

Sphingomyelin, 
phosphatidylserine
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stable lipid bilayer. They elicit cargo delivery through endo-
cytosis or membrane fusion.33,34 Kolhe et al.35 demonstrated 
the communication and signaling between synovial 

fluid–derived sEVs and damaged articular cartilage cells. 
These synovial fluid–derived exosomes downregulated the 
expression of anti-inflammatory molecules and upregulated 

Figure 1. Biogenesis and composition of exosomes.

Figure 2. Schematic representation of role of exosomes in pathophysiology of knee osteoarthritis and key regulatory mechanisms of 
mesenchymal stem cell–derived exosomes.
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the expression of immune cells and pro-inflammatory 
molecules. They reported sEVs derived from females to 
have a more detrimental effect than sEVs derived from 
males and concluded that sEVs from the female are estro-
gen-responsive, which plays a pivotal role in toll-like recep-
tor signaling in OA knee.35

Synovial fibroblast (SF)–derived exosomal miRNA pro-
duces the inflammatory and degenerative process of articu-
lar cartilage. A few studies proved that SF-derived exosomal 
miRNA of female origin is closely associated with estrogen 
exposure and toll-like receptor signaling pathways.36 
miRNA-146a-5p derived from adipose tissue–derived sEVs 
demonstrate the progression of knee OA.37 Various studies 
have reported the increased levels of catabolic gene expres-
sion (MMP-13 and ADAMTS-5) and decreased levels of 
anabolic gene expression (COL2A1 and ACAN) on IL-1β-
stimulated exosomes derived from synovial fluid.38,39

The signaling pathways involved in OA knee involves 
transforming growth factor-β (TGF-β), SMADs, BMPs, 
MMPs, ADAMTS, inducible nitric oxide synthase (iNOS), 
IL-1, IL-6, and TNF-α, which are regulated by miRNA 
genes.40 miRNAs regulate aberrant autophagy in OA chon-
drocytes by regulating apoptosis and reactive oxygen spe-
cies molecules.41 miRNA enhances histone deacetylation 
and DNA methylation of promoter sites, which affects the 
target gene expression in OA knee. In OA knee, WNT-5A 
signaling pathway regulates both cartilage differentiation 
and degeneration via MSC derived miRNA-92a-3p overex-
pression reported by Mao et al.42 Further they found a 
decreased expression of miRNA-95-5p in degenerated 
cartilage.43 The cartilage homeostasis can be regulated by 
histone deacetylase 2/8, which impairs cartilage develop-
ment by inhibiting the cartilage-specific gene expression. 
Domenis et al.44 investigated and treated OA patients with 
SF-derived exosomes and found the profound increase in 
MMP-7, MMP-12, IL-1β, CCL-8, CCL-15, CCL-20, and 
CXCL1, which lead to cartilage inflammation and degrada-
tion in joints.10 sEVs maintain joint homeostasis by balanc-
ing the immunological signals from various cells. Once the 
pathogenic signals outrages the exosomal balancing, eva-
sion of joint homeostasis results and thus the aggravation of 
the OA pathological process occurs.

Sources and Separation of Exosomes

Exosomes are found in all cells and body fluids.45 Various 
sources utilized for harvesting exosomes, separation tech-
niques involved with their biological effects are given in 
Table 2. Due to the challenges faced in isolating exosomes 
from various body fluids, regenerative and translational 
medicine experts used MSC-derived exosomes for treating 
various disorders. The exosomes derived from MSCs are 
of prime importance due to the greater therapeutic and 
regenerative potential. MSC-derived exosomes are easily 

extracted from bone marrow, adipose tissue, umbilical 
cells, endometrial fluid, amniotic fluid, and placental 
cells.46 Amniotic fluid MSC-derived exosomes are more 
preferred for clinical applications than bone marrow–
derived exosomes.47 Various sources of MSC utilized to 
separate their sEVs are shown in Fig. 3.

Exosomes as a Diagnostic Tool

Extracellular vesicles produced by cells and body fluids 
are released into extracellular space to modulate the dis-
ease process in various stages of the disease. Hence they 
act as diagnostic markers.48 Shan et al.49 reported elevated 
follicular T helper cells and serum IL-21, IL-17A, and 
interferon-γ (INF-γ) in knee OA patients. Kolhe et al.35 
reported that the gender-specific changes observed in syno-
vial fluid miRNA in knee OA patients suggested the pros-
pect of using extracellular vehicles to identify tissue-specific 
biomarkers in OA knee. Skriner et al.50 stated that citrulli-
nated peptide proteins are ubiquitous and unique. They are 
associated with different types of joint disorders but not in 
osteoarthritis. Due to elevated levels of exosomal lncRNA 
PCGEM1 were observed by Zhao et al.51 in the progressive 
stages of OA knee, exosomal lncRNA PCGEM1 has 
become a powerful indicator and biomarker to differentiate 
between early and late stages of knee OA. Murata et al.52 
observed decreased levels of miRNA 16 and miRNA 132 
in patients with knee OA than in healthy individuals and 
decreased levels of synovial fluid–derived miRNA-16, 
-146a, and -223 in patients with knee OA than in those with 
knee rheumatoid arthritis. In patients with knee OA, 
Borgonio et al.53 found overexpression of 12 miRNAs in 
the plasma (miRNA-16, -20b, -29c, -30b, -93, -126, -146a, 
-184, -186, -195, -345, and -885-5p), when compared with 
380 miRNAs. Beyer et al.54 confirmed that decreased lev-
els of plasma let-7e exosomes are associated with progres-
sion of hip and knee OA to a severe disease, which requires 
total hip/knee arthroplasty.

Exosomes in Therapeutics

In knee OA, exosomal cargo acts as a double-edged sword. 
Apart from being the key mediator of cartilage degradation 
involved in the pathogenesis of OA as detailed above, exo-
somes have also been used as the targeted drug therapy for 
joint injury and osteoarthritis over the past 5 years. Though 
tiny in size, exosomes are biologically active with a stable 
structure devoid of degradation and better serve as a tar-
geted delivery system against the diseases.55 The treatment 
of knee OA with sEVs reduced the DNA binding affinity of 
c-jun activating protein-1 and nuclear factor-κB (NF-κB).56 
Hence, the transcription of matric metalloproteinases was 
downregulated. Exosomes derived from the embryonic 
MSCs attenuates inflammatory response and promotes 
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Table 2. Sources and isolation of exosomes for Knee Oa.

Source exosomes isolation Biological effects

Systemic sources
Bone marrow–derived 
MSC29,41

mirNa-92a-3p;
mirNa-26a-5p

Ultracentrifugation
Ultrafiltration

Promotes chondrocytes migration, proliferation 
and differentiation

enhanced cartilaginous matrix synthesis
Promotes synovial fibroblast survival and hence 
reduces the occurrence of synovitis

embryo-derived MSC42 mirNa-135b immunoaffinity
Ultracentrifugation

induces in vitro chondrocyte proliferation
enhances in vivo repair and regeneration of 
cartilage

adipose tissue–derived 
MSC43,44

mirNa-100-5p Ultracentrifugation
Ultrafiltration

enhanced periosteal cellular based 
chondrogenesis

enhanced chondroprotective and anti-
inflammatory effects

Synovium-derived MSC45,46 mir-140-5p Ultrafiltration Halts the progression of Oa to advanced stages
Maintains the integrity of microstructures of 
trabecular bony structures

enhances the bone mineral density
amniotic fluid–derived 
MSC47

aF-exos Precipitation ameliorates the pain mechanism in knee Oa
Complete recovery of hyaline cartilage 
restoration

Maintains cartilage surface integrity
Human exfoliated deciduous 
teeth–derived MSC44

SHeD-exos Ultracentrifugation enhances anabolic reaction and inhibits 
catabolic reaction in Oa pathogenesis;

Maintains chondrocyte and joint homeostasis
induced pluripotent–derived 
MSC46

iP-exos Ultrafiltration Promotes chondrocytes migration, 
proliferation, and differentiation

local sources
Synovial fluid23,48 SF-exos Precipitation

affinity-based capture
Differentiates early and late stages of Oa knee
Maintains joint and cartilage homeostasis

Cartilage49,50 C-exos Ultrafiltration
Precipitation

Delays Oa progression
induces ectopic chondrogenesis of cartilage 
progenitor cell constructs in chondrocyte-
deficient areas

Synovium24,45 S-exos Ultracentrifugation enhanced chondrocyte migration and 
proliferation via Wnt-5a and -5b signaling

Maintains the joint tribology in a rat Oa model
Overexpression of catabolic regulatory genes 
and underexpression of anabolic regulatory 
genes

Subchondral bone51,52 SB-exos immunoaffinity Halts the severity of Oa knee progression
attenuates the pain response
regulates joint homeostasis via tgF-β

infrapatellar fat pad43,53 iFP-exos Ultrafiltration enhanced regenerating potential of cartilage 
both in vitro and in vivo studies

Promotes normal gait pattern in Oa in rat 
model

tendon54,55 t-exos Density gradient and 
ultrahigh-speed 
centrifugation

enhances tenogenic differentiation of MSCs
enhanced production of tendon matrix in vitro
Maintenance of biomechanical strength of 
tendons

ligaments56,57 l-exos Ultracentrifugation
Western blotting

Promotion of ligamental cyclic stretch force
retards the progression to advanced stages of 
Oa

??Unknown (to be explored)

Oa = osteoarthritis; MSC = mesenchymal stem cell.
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healing of subchondral bone defect in rat OA model of tem-
poromandibular joint.57-60 On evaluating exosomes from the 
induced pluripotent–derived stem cells and synovial mem-
brane, the latter halted the progression of knee OA in a 
mouse model but the former exhibited a superior therapeu-
tic response and a stronger chondrocyte migration and pro-
liferation.61 In the past decade, the usage of MSCs plays a 
significant role in cartilage regeneration and focal chondral 
defects. Similarly, the therapeutic role of mesenchymal 
stromal cell–derived sEVs in knee OA is detailed below.

MSC-Derived exosomes

The specificity of sEVs depends on its dimensions, struc-
ture, membrane markers, and biogenesis. MSC-derived 
sEVs promote the reparative and regenerative processes of 
cartilage by suppressing the immune mechanism involved 
in the disease process of OA knee. Rani et al.,62 Colombo 
et al.,63 and Thery et al.24 proved that MSC-derived sEVs 
promote the chondrogenesis in the cartilage defects. The 
molecular composition of these extracellular vehicles 
includes endosome-associated proteins (Rab GTPase, 
SNAREs, annexins, flotillin, Tsg101), membrane proteins 
(CD-63, -81, -82, -53, -37), lipid raft protein (glycosylphos-
phatidylinositol-anchored protein) and RNA (sRNAs, 
miRNA, fragments of tRNA, Y-RNA, and siRNAs). The 
cross-talk between MSCs and the neighboring diseased 
micromolecular tissue environment is the zone of 

MSC-sEV based therapeutics. sEV formation is regulated 
by the tumor suppressor–activated pathway 6 and its 
enhanced production is regulated by p53.64,65 Recent litera-
ture reported that MSC-derived sEVs regulates cell migra-
tion, proliferation and differentiated along with the 
production of the extracellular matrix, which supports the 
cellular meshwork.66

MSC-Derived exosomes in Knee OA

Exosomes derived from MScs contain bioactive macromol-
ecules with the highest therapeutic potential.67,68 Various 
studies have demonstrated the cartilage repair and regenera-
tion through MSC-derived exosomes via immunomodula-
tory and evasion of apoptosis mechanisms. They support 
neoangiogenesis and cellular proliferation.69-73 These exo-
somes demonstrate the homing effect of parental MSCs.74 
MSC-derived exosomes also possess surface molecules 
such as CD-29, -44, and -73.14

The administration of human embryonic MSC-derived 
exosomes as intra-articular injection has shown the regener-
ating potential in osteochondral defects and eliminated car-
tilage destruction with enhanced matrix production in the 
OA model.59,75 EVs isolated from the human adipose tis-
sue–derived MSCs exerted enhanced chondroprotection 
through diminished pro-inflammatory mediators produc-
tion and increased anti-inflammatory cytokine production. 
Exosomes from adipose-derived MSCs upregulates 

Figure 3. Sources of mesenchymal stem cell (MSC)–derived exosomes and their therapeutic actions.
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chondrogenic potential in periosteal cells via miRNA145 
and miRNA 221.76,77

sEVs target-specific signals in subchondral bone, such 
as TGF-β, IL-1β, and attenuate the pathogenesis of OA and 
reduce the pain response.4,17,78 It was also noted in various 
studies that sEVs could function by TGF-β regulation in 
their targeted cells and downregulating MMP13 and upreg-
ulating calcitonin gene-related peptide (CGRP) and iNOS 
in the dorsal root ganglion of animal models.5,79-81 Moreover, 
bone marrow stromal cell–derived exosomes prevent the 
cartilage degeneration and downregulated the expression of 
tartrate-resistant acid phosphatase (TRAP) expression and 
RANKL-RANK-TRAF6 signaling activation to promote 
remodeling of subchondral bone.82-86 Hence these MSC-
derived exosomal products can be used to ameliorate the 
acute pain due to the upregulated inflammatory cascade 
involved in the pathogenesis of the disease. The various 
immunomodulatory mechanisms involved in the therapeu-
tic effects of MSC-sEVs in knee OA are given in Fig. 4.

Therapeutic Immunomodulatory 
Pathways of MSC-sEVs

Out of hundreds of sEV components, exosomal miRNA, 
exosomal lncRNAs, exosomal proteins and exosomal lipids 
play a significant role in the course of the knee OA disease 
process. The key exosomal components that participate in 
therapeutic immunomodulation against OA are the miRNAs 
and lncRNAs. We explain the possible immunomodulatory 
mechanism involved in bringing out the desired outcome.

MSC-seV miRNA-Mediated Pathway

A significant reduction in miRNA-92a-39 and miRNA-
95-5p was observed in OA chondrocytes.42,77 An increased 
miRNA-145 and -221 derived from adipose tissue–derived 
stem cells favor chondrogenesis and suppress the expres-
sion of pro-inflammatory cytokines and promote the degen-
erated cartilage for repair and regeneration. Thus adipose 
tissue–derived exosomes favor a stimulatory effect on 
chondrocyte migration, proliferation, and differentiation.77 
In the knee OA rat model, Jin et al.87 demonstrated that the 
overexpression of human bone marrow MSC–derived exo-
some (miRNA-26a-5p) retards the damage of synovial 
fibroblasts in vitro and enhances the longevity of SF by 
underexpression of PTGS2 in vitro and halts the disease 
progression. The enhanced cartilage matrix production and 
chondrocyte proliferation are demonstrated by administra-
tion of miRNA-92a-3p-transfected MSCs.43 The adminis-
tration of anti-miRNA-449a-5p reverses osteoarthritic 
chondrocyte–mediated proinflammatory effects and carti-
lage destruction in knee OA.88

MSC-seV lncRNA-Mediated Pathway

Exosomal lncRNA PCGEM1 demonstrated a positive cor-
relation with the WOMAC score and exhibit a significant 
difference between the early and late stages of OA knee. 
These sEVs modulate the repair and regeneration of 
denuded cartilage.51 Exosomal lncRNA-KLF3-AS1 derived 
from MSC exhibited overexpression of COL2A1 and 
aggrecan levels, underexpression of pro-inflammatory 

Figure 4. therapeutic immunomodulation of mesenchymal stem cell–derived exosomes in the pathogenesis of knee osteoarthritis.
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mediators and enhances the survival of chondrocytes in 
knee OA.89 Exosomal lncRNA-KLF3-AS1 target miR-206/
GIT1 axis, which promotes cartilage regeneration in OA. 
Such coordination inhibits chondrocyte apoptosis and 
enhances proliferation and differentiation.90

Fibulin-3 is widely expressed in humans for skeletal 
development, which is an extracellular glycoprotein. 
Runhaar et al.91 demonstrated a positive correlation with 
elevated fibulin-3 serum concentrations with the histologi-
cal joint degeneration in the rat knee OA model. Kim 
et al.92 proved that the elevated NADPH oxidase due to 
increasing age has a positive correlation with advanced 
stages of knee OA. Collagen X is the measure of chondro-
cyte hypertrophy in OA knee.93 There is a temporal asso-
ciation between inflammation (high-sensitivity C-reactive 
protein) and chondrocyte hypertrophy (COL-X) through 
HIF-2α.94 A negative correlation was observed between 
COMP (cartilage oligomeric matrix protein) and duration 
of OA and a positive correlation between COMP and age. 
MSC-sEV derived lncRNAs upregulate COMP, thereby 
facilitating the longevity and regenerative capabilities of 
chondrocytes by inhibiting the apoptotic pathways and 
pro-inflammatory cytokines.

Advantages of Cell-Free Therapeutics

Exosomal cargos are clinically and therapeutically superior 
to stem cell in following aspects namely (a) less inherent 
risk than stem cell or cell-based therapies, (b) nonreplicabil-
ity of exosomes hence no risk of malignant transformation, 
(c) less immunogenic response toward infections and can-
cers, and (d) act exactly in the site of diseased tissue.95 The 
versatility of sEVs enhances intracellular signaling and 
shuttling and proceeds to maintain micromolecular homeo-
stasis. Exosomes offer neuroprotection and neuroplasticity 
by crossing the blood-brain barrier in neurodegenerative 
diseases.96 Although stem cells remain the powerhouse to 
manufacture the MSC-sEVs, by engineering their intercel-
lular messengers through controlled micro-environment, 
we can harness their regenerative potential to varied disease 
conditions without the need for a cellular source to exert the 
desired paracrine effect in the vicinity.

Regulations for sEV Usage

The International Society for Extracellular Vesicles (ISEV) 
and the European Network on Microvesicles and Exosomes 
in Health and Disease (ME-HaD) have formed guidelines 
to foster the use of the growing therapeutic potential of 
exosomal therapy in osteoarthritis.97 The process of collec-
tion, processing, testing, quality control, and manufactur-
ing in the production of exosomes have been addressed in 
their regulations. Through these policies; the guidelines 
address the regulatory framework that will be required for 

harnessing the true potential of sEVs in therapeutic applica-
tions. There are currently no Food and Drug Administration 
(FDA)–approved exosome products for human use in the 
United States.98 Therapies using the exosomes are under the 
Investigational New Drug (IND) developmental phase and 
need the approval of the regulatory agencies before initiat-
ing the clinical trial.99

According to the Center for Biologics Evaluation and 
Research (CBER), the exosomes are regulated as biologi-
cal products.100 Based on the individual types, the frame-
work that was laid down for products in this category 
applies to the Exosomes. The functional moiety in sEV-
based therapy determines its medicinal type.101 As the bio-
logical medicinal products include a span of various 
pharmaceuticals, these were classified as Advanced 
Therapy Medicinal Products (ATMPs) in 2007. It was fur-
ther subgrouped to conventional biological medicinal 
products due to the biological, physicochemical, and 
immunochemical properties.102 At this moment the sEVs 
do not have a standardized protocol for isolation and stor-
age; and include homemade cocktails as protocols with no 
standardization for reagents, storage containers and storage 
time for each desired sEV-based product.99,101,103

Future Research and Scope

MSC-derived exosomes act mainly by suppressing the pro-
inflammatory mediators and activating the anti-inflamma-
tory factors. With their immunomodulatory properties, they 
influence the role of T cells.104 This feature remains a poten-
tial topic for investigating their role in various autoimmune 
and inflammatory conditions. Extensive studies are to be 
made to develop biomarkers for early identification of joint 
diseases.69 Stem cell–derived exosomes have the potential 
with their biologically active contents to halt the pathogen-
esis of various diseases.67,68 Moreover, stem cells secrete 
exosomes in large numbers which are easier to culture and 
collect.70 Hence, stem cell–derived sEVs hold huge poten-
tial as parental cells in the future.

The emerging role of exosomal therapy in orthopedics 
remains unexplored. With the ongoing research with 
increased interest in exosomes, sEV-based therapeutics is 
not far from reach.95,96 The 2 major domains of future 
research on exosomes involve its diagnostic and therapeu-
tic applications.

Exosomes are a potential candidate as early diagnostic 
markers to identify clinical osteoarthritis and cancer based on 
the exosome-specific proteins.71,72 Moreover, miRNAs and 
lncRNAs of the exosomal structure have been considered as 
potential diagnostic markers for diseases like rheumatoid 
arthritis and osteoarthritis.35,45,73,77,105-107 Studies have detailed 
that exosomal components of urine were altered in the dis-
ease and could be used to predict cartilage degradation and 
cancer as a noninvasive biochemical marker.108,109
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Exosomes can also be used as infection biomarkers in 
the early postoperative stages or other complex disease con-
ditions in orthopedics from the circulating pool of sEVs in 
blood.9,46,102,108,110-114 Paracrine effect of exosomes from 
stem cells can be used to delay diseases and repair, regener-
ate or rejuvenate organs.33,34,62,115-121 Exosomes are deemed 
anti-inflammatory for various orthopedic conditions involv-
ing joints.122 They can also be used to understand the patho-
physiology of a spectrum of diseases and can propel the 
scope of therapies by the knowledge acquired from the cur-
rent technologies in hand.123 Therapeutic application of 
exosomes from defined cell sources have diverse therapeu-
tic applications including immune-modulatory and regen-
erative therapies.14,75,96,124,125 Apart from orthopedics, there 
is a huge potential for sEV-based therapeutics in auto-
immune diseases, neurodegenerative diseases, infectious 
diseases, and diagnosis of rare diseases and cancers, which 
is being actively investigated by the various registered trials 
worldwide.96,122,124

There is a paradigm shift with continual breakthroughs 
in exosome research resulting in novel therapeutic options 
reshaping the landscape of the14,72,77,106 market accordingly. 
Although research on exosomes was started on scientific 
interests the potential of the exosome platforms show 
immense promise in future therapeutics.126

Although there are about 79 clinical trials registered to 
evaluate the potential of sEV-based diagnostic and thera-
peutic potential in varied fields such as cancer diagnosis 
and therapy, infection, including SARS-CoV-2, psychiatry, 
dermatologic applications and neurodegenerative condi-
tions including Parkinson’s and Alzheimer’s disease, none 
of the trials have registered to look into their role in osteo-
arthritis of the knee.124 Although regenerative therapies 
with MSC are being seen to hold a future in the manage-
ment of OA, sEV-based technology holds the key to unlock 
the potential toward knee preservation and regeneration. A 
systematic review of preclinical studies by Tan et al.127 has 
demonstrated the therapeutic efficacy of MSC exosomes in 
the regeneration of bone in their study. The aforementioned 
showed improvised biochemical, morphological and histo-
logical outcomes in adjunct to the regeneration of bone and 
surrounding vasculature.107 Study on exosomes derived 
from platelet-rich plasma (PRP-Exos) showed that they can 
be used to significantly protect cartilage from degradation 
through the Wnt/β-catenin signaling pathway with enhanced 
action in comparison to activated PRP.127,128 Further 
research is warranted to analyze the therapeutic effects of 
exosomes from varied sources.

Nevertheless, challenges in this field need to be over-
come. Evidence are yet to be documented for identifying 
the major target cell following the transfer of sEVs from 
cell to cell within the joint. Moreover, methods of exosome 
production and release inside the joint remain unclear 
which limits the exosome-based targeted intervention 

strategies. Besides, for the MSC-derived exosomes to have 
action on the chondrocytes in the deeper layer it has to per-
meate through the cartilage matrix and outer later, which is 
relatively complete at the early OA stage, hence engineer-
ing MSC-derived exosomes for use in the early OA might 
have to focus on other joint cells like synovial cells that are 
readily accessible to exosomes for maintenance of carti-
lage matrix.

Conclusion

Exosomes enact as a natural vehicle for the transfer of bio-
logical substances between cells and thereby contributing to 
the onset and progression of OA with strong potential as a 
treatment of OA. However, the intricate composition and 
uncertain functioning are inquisitive facets warranting fur-
ther exploration. Given making the exosome-based therapy 
a reality in the management of OA, studies investigating 
their mechanism of action and identification of the potential 
therapeutic targets hold promise.
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