

Unlocking the Potentials of Exosomes in Achilles Tendinitis

Naveen Jeyaraman¹✉, Madhan Jeyaraman²✉, Swaminathan Ramasubramanian³✉, Sangeetha Balaji⁴✉, Sathish Muthu⁵✉

Received on: 08 August 2024; Accepted on: 08 September 2024; Published on: 20 September 2024

ABSTRACT

Achilles tendinitis, a prevalent condition among athletes, is marked by inflammation and degeneration of the Achilles tendon due to factors such as overuse and mechanical overload. Current treatments are often limited in efficacy, prompting the exploration of novel therapeutic approaches. Exosomes, small extracellular vesicles released from cells, have emerged as promising agents for tendon healing due to their ability to transfer bioactive molecules and modulate cellular processes. This review examines the role of exosomes in the treatment of Achilles tendinitis, highlighting their anti-inflammatory, regenerative, and immunomodulatory properties. Exosomes derived from mesenchymal stem cells (MSCs) and tendon stem cells (TSCs) can reduce inflammation by modulating cytokine levels and suppressing proinflammatory pathways. They promote tenocyte proliferation, enhance extracellular matrix (ECM) synthesis, and improve tendon structure and function. Preclinical studies demonstrate significant benefits of exosome therapy, including reduced inflammation, improved collagen organization, and enhanced biomechanical properties of the tendon. Early clinical trials indicate that exosome-based therapies are safe and potentially effective, showing promise in reducing pain and improving tendon function. However, challenges such as standardizing exosome isolation and characterization, navigating regulatory pathways, and understanding long-term safety and efficacy must be addressed. Future research should focus on optimizing exosome sources, dosages, delivery methods, and exploring combination therapies to enhance therapeutic outcomes. Exosomes could revolutionize the management of Achilles tendinitis, offering a novel and effective treatment modality.

Keywords: Achilles tendinitis, Exosomes, Inflammation, Mesenchymal stem cells, Regenerative medicine, Tendon healing.

Journal of Foot and Ankle Surgery (Asia-Pacific) (2024): 10.5005/jp-journals-10040-1369

INTRODUCTION

Achilles tendinitis, a common musculoskeletal condition, is characterized by inflammation and degeneration of the Achilles tendon, which connects the calf muscles to the heel bone. It is prevalent among athletes, particularly runners, accounting for 5–18% of all running-related injuries.^{1,2} The incidence of Achilles tendinitis is approximately 7–9% in top-level runners, reflecting its significant impact on sports medicine.³ The etiology of Achilles tendinitis involves a multifactorial process. Overuse, mechanical overload, and repetitive stress are primary contributing factors, leading to microtrauma and inflammation. This condition can be exacerbated by intrinsic factors such as biomechanical abnormalities (e.g., overpronation, tight calf muscles) and extrinsic factors like improper footwear and abrupt changes in training intensity.^{4,5} Pathophysiologically, Achilles tendinitis progresses through several stages, beginning with peritendinitis, where inflammation occurs around the tendon. As the condition advances, tendinosis develops, characterized by degenerative changes and disorganization of collagen fibers without significant inflammatory cell infiltration. Histologically, the tendon exhibits increased ground substance, neovascularization, and disrupted collagen architecture, compromising its mechanical properties and predisposing it to rupture.^{6,7} Clinically, patients with Achilles tendinitis present with pain and stiffness in the posterior aspect of the ankle, often exacerbated by activity and relieved by rest. Morning stiffness and tenderness along the tendon, particularly at its insertion on the calcaneus, are hallmark signs. Swelling and crepitus may also be observed in chronic cases.⁸ Diagnosis is primarily clinical, supported by imaging modalities. Ultrasonography is useful for assessing tendon thickness, structure, and neovascularization, while magnetic resonance imaging (MRI) provides detailed visualization of intratendinous changes and the extent of degeneration.⁹

^{1,2}Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India

^{3,4}Department of Orthopedics, Government Medical College, Omandur Government Estate, Chennai, Tamil Nadu, India

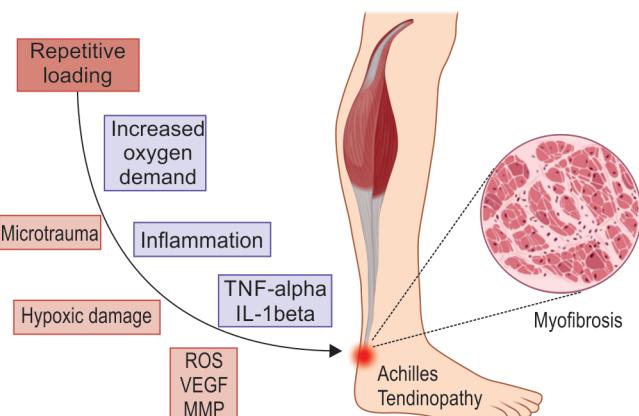
⁵Department of Orthopaedics, Government Medical College, Karur; Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India

Corresponding Author: Madhan Jeyaraman, Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India, Phone: +91 8310600785, e-mail: madhanjeyaraman@gmail.com

How to cite this article: Jeyaraman N, Jeyaraman M, Ramasubramanian S, et al. Unlocking the Potentials of Exosomes in Achilles Tendinitis. *J Foot Ankle Surg (Asia-Pacific)* 2024;11(4):161–168.

Source of support: Nil

Conflict of interest: None


Exosomes are small extracellular vesicles, typically 40–200 nm in diameter, released from cells upon fusion of multivesicular bodies (MVBs) with the plasma membrane. They are enclosed by a lipid bilayer and contain various biomolecules, including proteins, lipids, and nucleic acids, reflective of their cell of origin. Exosomes play crucial roles in intercellular communication by transferring their cargo to recipient cells, influencing various physiological and pathological processes. The biogenesis of exosomes involves the endosomal pathway.¹⁰ Initially, endosomes undergo inward budding, forming intraluminal vesicles within MVBs. Upon fusion of MVBs with the plasma membrane, these vesicles are released into the extracellular space as exosomes. Various stimuli, including cellular stress and hypoxia, can modulate exosome secretion, which is regulated by components such as

the endosomal sorting complexes required for transport (ESCRT) machinery and tetraspanins.¹¹ Exosomes are pivotal in mediating cellular communication. They facilitate the transfer of bioactive molecules, thereby modulating recipient cell functions. This intercellular transfer can influence processes such as immune responses, angiogenesis, and tissue repair.^{10,12} In the context of Achilles tendinitis, exosomes derived from tendon stem cells (TSCs) have shown promise in enhancing tendon healing by balancing the synthesis and degradation of the extracellular matrix (ECM) and promoting the tenogenesis of TSCs.¹³ They achieve this by delivering regulatory molecules that modulate gene expression and cellular behavior in recipient cells. Moreover, exosomes can alter the local microenvironment, reducing inflammation and fibrosis, and enhancing tissue regeneration. These properties underline their potential therapeutic applications in regenerative medicine, including the treatment of tendon injuries.

PATHOPHYSIOLOGY OF ACHILLES TENDINITIS

The Achilles tendon is the largest and strongest tendon in the human body, connecting the gastrocnemius and soleus muscles to the calcaneus (heel bone).¹⁴ It plays a crucial role in plantarflexion of the foot, essential for activities such as walking, running, and jumping. Structurally, the tendon is composed of dense, parallel collagen fibers, predominantly type I collagen, which provide tensile strength and elasticity. It is surrounded by a paratenon, a sheath that facilitates gliding movements and is poorly vascularized, particularly in its mid-portion, making it susceptible to degeneration and injury.¹⁴ The Achilles tendon is subjected to substantial biomechanical stress, particularly during high-impact activities.¹⁵ Repetitive loading, especially eccentric contractions, can lead to microtrauma and cumulative damage. Overuse, combined with inadequate recovery, contributes to tendinopathy.¹⁵ Additionally, intrinsic factors such as biomechanical abnormalities (e.g., overpronation, limb length discrepancies) and extrinsic factors like improper footwear and sudden changes in training intensity exacerbate the risk. The poor vascularity of the tendon, particularly in the watershed area, impairs healing and predisposes the tendon to chronic degeneration.¹⁶

The pathophysiology of Achilles tendinitis is a complex interplay of inflammatory and degenerative mechanisms.¹⁷ In the initial stages, the tendon is subjected to repetitive microtrauma, sparking an inflammatory response. Macrophages and neutrophils rush to the site, releasing a barrage of pro-inflammatory cytokines like interleukin-1 beta (IL-1 β) and tumor necrosis factor alpha (TNF- α), along with reactive oxygen species. This onslaught contributes to pain and tissue damage. As the condition progresses, the inflammation gives way to a chronic, non-inflammatory state known as tendinosis. Here, the inflammatory cells are notably absent, replaced by fibroblasts and myofibroblasts. In tendinosis, the balance between the synthesis and degradation of the ECM is disrupted. Tendon fibroblasts or tenocytes become hyperactive, proliferating rapidly, and producing disorganized weakened collagen fibers. This chaotic collagen arrangement, coupled with an increased production of proteoglycans and glycosaminoglycans, leads to a compromised tendon structure and function. Moreover, the upregulation of matrix metalloproteinases (MMPs) accelerates ECM degradation, while the downregulation of tissue inhibitors of metalloproteinases (TIMPs) fails to counteract this breakdown, exacerbating the degenerative process. The intricate dance between these cellular and molecular players transforms a once sturdy tendon into a painful and dysfunctional structure.^{6,18,19}

Fig. 1: Pathophysiology of Achilles tendinitis resulting in myofibrosis and degeneration. TNF, tumor necrosis factor; IL, interleukin; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; MMP, matrix metalloproteinases

The transition from inflammation to degeneration marks a shift in the cellular landscape; with the initial inflammatory assault giving way to a degenerative milieu where the ECM is continually degraded and rebuilt in a disordered manner, ultimately undermining the tendon's integrity and function as shown in Figure 1.

Cytokines and growth factors are central to the pathophysiology of Achilles tendinitis, orchestrating both the inflammatory and healing processes. In the initial phase, proinflammatory cytokines such as IL-1 β and TNF- α dominate, driving the recruitment of inflammatory cells and the release of enzymes that degrade tissue. This inflammatory milieu sets the stage for acute tendon damage.^{20,21} On the flip side, anti-inflammatory cytokines such as IL-10 and growth factors like transforming growth factor-beta (TGF- β) and platelet-derived growth factor (PDGF) come into play, steering tissue repair and remodeling. These growth factors are vital for tenocyte proliferation and collagen synthesis, aiding in tendon healing. They stimulate the production of organized collagen fibers, crucial for restoring tendon integrity. However, the balance between these signaling molecules is delicate. An excess of pro-inflammatory cytokines or a deficiency in anti-inflammatory cytokines and growth factors can tilt the scales toward chronic inflammation.^{22,23} This imbalance impairs the healing process, creating a vicious cycle of injury and degeneration. The persistent inflammatory environment hampers effective repair, leading to prolonged tendon dysfunction and degeneration.

EXOSOMES: STRUCTURE AND FUNCTION

Exosomes are small extracellular vesicles, typically ranging from 40 to 200 nm in diameter, enclosed by a lipid bilayer. This lipid bilayer is rich in cholesterol, sphingomyelin, and ceramide, providing structural integrity and stability. The lipid composition not only protects the internal cargo but also facilitates the fusion with target cell membranes, allowing the transfer of molecular contents.¹² Surface markers on exosomes are critical for their identification and functional roles. These markers include tetraspanins (CD9, CD63, CD81), integrins, and major histocompatibility complex (MHC) molecules.²⁴ Tetraspanins are involved in exosome biogenesis and facilitate the docking and fusion with recipient cells. Integrins and MHC molecules contribute to cell targeting and immune modulation, respectively. These surface markers are often used to isolate and characterize exosomes in research and clinical applications.²⁵

Exosomes carry a variety of molecules that reflect their cell of origin. Their protein content includes enzymes, cytoskeletal proteins, heat shock proteins, and signaling molecules.²⁶ Exosomes from mesenchymal stem cells (MSCs) are particularly notable, as they contain growth factors and cytokines that can modulate the immune response and aid in tissue regeneration.²⁷ Proteomic analyses reveal that exosomes harbor thousands of proteins, underscoring their complex roles in cellular communication. Lipids within exosomes are not just structural components; they also play active roles in signaling pathways. These lipids can affect membrane fluidity and influence how exosomes interact with recipient cells. Bioactive lipids in exosomes can initiate intracellular signaling cascades when delivered to target cells. Exosomal ribonucleic acids (RNAs), including messenger RNAs (mRNAs), microRNAs (miRNAs), and other noncoding RNAs, are essential for their regulatory functions. These RNAs can be transferred to recipient cells, where they affect gene expression and cellular behavior.¹² For example, miRNAs within exosomes can either suppress or enhance the expression of specific target genes, thereby influencing processes like inflammation, apoptosis, and cell proliferation.

The uptake of exosomes by recipient cells is a complex process involving multiple mechanisms. Exosomes can be internalized through endocytosis, phagocytosis, micropinocytosis, or direct fusion with the plasma membrane.¹² The specific pathway of uptake is influenced by the cell type and the exosomal surface molecules. For instance, exosomes expressing certain integrins may preferentially bind to corresponding receptors on the recipient cell surface, facilitating targeted delivery. Once internalized, exosomes release their cargo into the cytoplasm of recipient cells, where the contents can exert their functional effects. The process of cargo delivery is regulated by the exosomal lipid bilayer and the presence of fusogenic lipids that promote membrane fusion and release of internal molecules.^{12,27}

The functional outcomes of exosome-mediated communication are diverse and context-dependent. One primary role of exosomes is to mediate intercellular communication by transferring bioactive molecules that can alter the physiological state of recipient cells. In the context of Achilles tendinitis, exosomes derived from TSCs or MSCs have shown promise in modulating the inflammatory response and promoting tissue repair. Exosomal signaling can lead to various functional outcomes, including:

- Modulation of inflammation: Exosomes can carry anti-inflammatory cytokines and miRNAs that suppress pro-inflammatory pathways, reducing local inflammation and promoting a regenerative environment. For example, exosomes from MSCs have been shown to decrease the expression of pro-

inflammatory cytokines such as IL-1 β and TNF- α , while increasing the levels of anti-inflammatory mediators like IL-10.²⁸

- Promotion of tissue repair and regeneration: Exosomes can deliver growth factors and other regenerative molecules that enhance cellular proliferation, differentiation, and ECM synthesis. In tendon injuries, exosomes have been observed to increase the expression of collagen types I and III, crucial for tendon repair and strength.^{29,30}
- Gene regulation: The miRNAs and mRNAs within exosomes can modulate gene expression in recipient cells. This regulatory effect can influence a wide range of cellular processes, including apoptosis, cell cycle progression, and differentiation.³¹ For instance, exosomal miRNAs can target specific mRNAs for degradation or inhibit their translation, thus finely tuning the cellular response to injury or stress.
- Immune modulation: Exosomes can influence immune cell behavior, either activating or suppressing immune responses. This property is particularly useful in managing chronic inflammatory conditions and autoimmunity.³² By delivering immune-modulatory molecules, exosomes can create an immunosuppressive microenvironment conducive to healing.

THERAPEUTIC POTENTIAL OF EXOSOMES

Exosomes have emerged as pivotal players in tissue regeneration and wound healing due to their ability to transfer bioactive molecules between cells, thereby modulating various biological processes.³⁰ In the context of wound healing, exosomes derived from MSCs to other cell types have demonstrated significant therapeutic potential. These small extracellular vesicles facilitate cellular communication and carry a diverse cargo of proteins, lipids, and RNAs that can influence the healing process. Exosomes enhance wound healing by promoting cell proliferation, migration, and angiogenesis. They also modulate inflammation, balancing the inflammatory response to create a conducive environment for tissue repair.^{12,33} For instance, exosomes from MSCs have been shown to reduce the levels of pro-inflammatory cytokines such as IL-1 β and TNF- α while increasing anti-inflammatory cytokines like IL-10. This shift in the cytokine milieu helps to resolve inflammation and initiates the regenerative phase of wound healing.³⁴ Additionally, exosomes stimulate ECM remodeling, a critical aspect of tissue repair. They promote the synthesis of collagen and other ECM components, improving the structural integrity and function of the healed tissue. The ability of exosomes to deliver growth factors and other regenerative molecules directly to the site of injury further enhances their role in tissue repair.³⁴

The regenerative potential of exosomes is mediated through several mechanisms of action as shown in Figure 2:

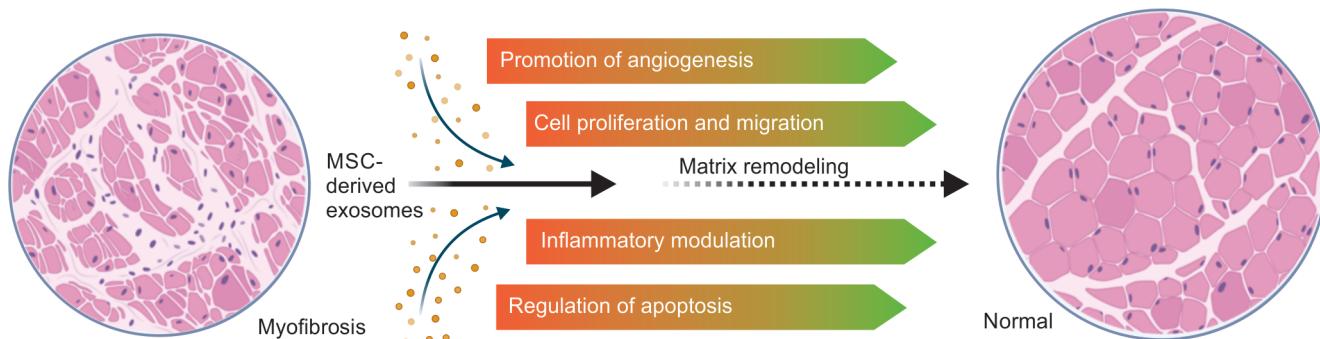


Fig. 2: Mechanism of action of exosomes in the management of tendo-Achilles tendinopathy

- Promotion of angiogenesis: Exosomes enhance the formation of new blood vessels by delivering pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). This angiogenic response ensures an adequate supply of oxygen and nutrients to the healing tissue, facilitating regeneration.
- Cell proliferation and migration: Exosomal cargo, including miRNAs and growth factors, promotes the proliferation and migration of various cell types, including fibroblasts, endothelial cells, and stem cells. This cellular activity is crucial for wound closure and the formation of new tissue.
- Modulation of inflammation: Exosomes play a dual role in inflammation by initially promoting an acute inflammatory response to clear debris and pathogens and subsequently transitioning to an anti-inflammatory phase to resolve inflammation and promote tissue repair. This modulation is achieved through the delivery of anti-inflammatory cytokines and miRNAs that suppress pro-inflammatory signaling pathways.
- Stimulation of ECM production: Exosomes enhance the synthesis of ECM components, including collagen and elastin, which provide structural support to the newly formed tissue. They also regulate the activity of MMPs and their inhibitors (TIMPs) to ensure balanced ECM remodeling.
- Regulation of apoptosis: Exosomes can deliver antiapoptotic signals to cells at the injury site, preventing excessive cell death and preserving tissue integrity. This is particularly important in maintaining the viability of cells critical for tissue repair.
- Improvement in biomechanical properties: The biomechanical properties of tendons, such as tensile strength and stiffness, are crucial for their function. Preclinical studies have shown that exosome treatment enhances these properties, making the healed tendon more resilient to mechanical stress. This improvement is likely due to the enhanced collagen synthesis and organization mediated by exosomes.
- Modulation of ECM remodeling: Exosomes regulate the activity of MMPs and TIMPs, ensuring balanced ECM remodeling. This regulation prevents excessive ECM degradation and promotes the deposition of new matrix components. In studies, exosome-treated tendons have shown a favorable balance between MMP activity and TIMP expression, contributing to effective tissue repair.
- Cell proliferation and differentiation: Exosomes stimulate the proliferation and differentiation of tendon-resident cells, including tenocytes and TSCs. This cellular activity is essential for replacing damaged cells and regenerating tendon tissue. Exosomes have been observed to increase the number of proliferating cells and enhance their differentiation into functional tenocytes, contributing to tendon repair.
- Reduction of scar formation: Scar tissue formation is a common issue in tendon healing, leading to reduced functionality and increased risk of re-injury. Exosome treatment has been shown to reduce scar formation by promoting a more organized and functional ECM. This is evidenced by the reduced presence of fibrotic markers and improved collagen alignment in exosome-treated tendons.

Preclinical studies using animal models have provided valuable insights into the therapeutic potential of exosomes for tendon healing, specifically in Achilles tendinitis. Various models, including rodent and large animal models, have been employed to mimic human tendon injuries and evaluate the efficacy of exosome-based therapies.^{35,36} One commonly used model involves the induction of Achilles tendinitis in rodents through mechanical overloading or the injection of collagenase to induce inflammation and degeneration. These models closely resemble the pathological features of human tendinitis, including tendon thickening, collagen disorganization, and increased inflammatory cell infiltration. In these studies, exosomes derived from different sources, such as MSCs and TSCs, have been administered locally to the injured tendon. The delivery methods include direct injection into the tendon or the application of exosome-loaded scaffolds to enhance retention and efficacy.³⁷

Preclinical research has demonstrated promising outcomes for exosome-based therapies in tendon healing.³⁸⁻⁴¹ Key findings from these studies include:

- Reduction of inflammation: Exosome treatment has been shown to significantly reduce inflammatory cell infiltration in the injured tendon. This anti-inflammatory effect is mediated by the delivery of anti-inflammatory cytokines and miRNAs that suppress pro-inflammatory signaling pathways. For example, exosomes from MSCs have been reported to decrease the levels of IL-1 β and TNF- α , promoting a shift towards a more regenerative environment.
- Enhancement of collagen synthesis and organization: Exosomes promote the synthesis of type I and type III collagen, essential components of the tendon ECM. They also improve the organization of collagen fibers, restoring the structural integrity and mechanical properties of the tendon. This is evidenced by increased collagen deposition and improved histological scores in exosome-treated tendons compared to controls.

CLINICAL APPLICATIONS AND STUDIES

Clinical trials exploring the potential of exosome-based therapies for tendon injuries are expanding, reflecting a growing interest in harnessing these extracellular vesicles for regenerative medicine. Several ongoing and completed trials have aimed to evaluate the efficacy and safety of exosomes derived from various cell sources, such as MSCs and TSCs, in treating tendon injuries including Achilles tendinitis.⁴² One notable completed trial investigated the effects of MSC-derived exosomes in patients with chronic tendinopathy. This phase I/II study aimed to determine the safety, tolerability, and preliminary efficacy of exosome injections. Results from this trial indicated promising improvements in tendon structure and function, with reduced pain and enhanced mobility.⁴³ Several ongoing trials are focusing on optimizing the delivery methods and dosing regimens for exosome therapies. These studies are exploring both direct injections of exosomes into the tendon and the use of exosome-loaded scaffolds to enhance tissue regeneration.^{44,45} Additionally, trials are being conducted to compare exosome therapy with conventional treatments such as physical therapy and corticosteroid injections to establish relative efficacy.^{46,47} The methodologies employed in these clinical trials vary, but generally, they involve the isolation and purification of exosomes from donor cells, followed by their administration to patients with tendon injuries. The treatment protocols typically include:

- Isolation and characterization: Exosomes are isolated from the conditioned media of cultured MSCs or TSCs using ultracentrifugation, filtration, and precipitation techniques. Characterization of exosomes involves assessing their size, concentration, and surface markers using techniques such as nanoparticle tracking analysis (NTA) and flow cytometry.

- Administration: Exosomes are administered *via* direct injection into the affected tendon. The dosage and frequency of administration vary among studies, with some protocols involving single injections while others use multiple doses over several weeks. The goal is to determine the optimal dosing regimen that maximizes therapeutic benefits while minimizing risks.
- Assessment: Clinical outcomes are assessed using a combination of imaging techniques (e.g., MRI, ultrasound) to evaluate tendon structure, along with patient-reported outcomes on pain, function, and quality of life. Biomechanical testing and histological analyses are also conducted to assess tendon healing at the molecular and cellular levels.

The clinical outcomes of exosome-based therapies for tendon injuries have been encouraging. Patients receiving exosome treatments have reported significant reductions in pain and improvements in tendon function. Imaging studies have demonstrated enhanced tendon healing, with increased collagen deposition and better-organized tendon fibers compared to baseline. In a phase I/II clinical trial, patients treated with MSC-derived exosomes showed marked improvements in pain scores and functional assessments. These improvements were sustained over follow-up periods extending up to 12 months, indicating the potential long-term benefits of exosome therapy. Additionally, patients reported improved quality of life and reduced dependency on pain medications, highlighting the therapeutic promise of exosome-based interventions.

Safety is a critical aspect of evaluating any new therapeutic approach. Clinical trials of exosome-based therapies have so far reported a favorable safety profile. Adverse effects are generally mild and transient, including localized pain and swelling at the injection site, which resolve without intervention. No serious adverse events directly attributable to exosome therapy have been reported in these studies. However, as with any emerging therapy, ongoing vigilance and long-term follow-up are essential to fully understand the safety implications. Potential risks include immunogenic reactions, although the acellular nature of exosomes and their immunomodulatory properties generally mitigate this risk. Moreover, the sourcing and production processes of exosomes must adhere to stringent quality control standards to prevent contamination and ensure consistency.

MECHANISMS OF EXOSOME ACTION IN ACHILLES TENDINITIS

Exosomes play a significant role in reducing inflammation, which is particularly important in conditions like Achilles tendinitis, characterized by chronic inflammation. They achieve these anti-inflammatory effects by modulating various inflammatory pathways. Exosomes derived from MSCs to TSCs carry a range of anti-inflammatory molecules, including miRNAs, proteins, and lipids, which can alter the behavior of recipient cells and influence inflammatory responses.⁴⁸ One of the main ways exosomes reduce inflammation is by inhibiting the nuclear factor-kappa B (NF- κ B) pathway, a key regulator of inflammatory responses.³⁵ Exosomal miRNAs such as miR-21, miR-146a, and miR-181c can target and suppress components of the NF- κ B signaling cascade, leading to a decrease in the production of pro-inflammatory cytokines and chemokines. Additionally, exosomes can influence the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which regulates immune responses and inflammation.⁴⁹ By delivering specific miRNAs that inhibit the JAK/STAT pathway,

exosomes help reduce the inflammatory response and create a more regenerative environment.

One of the critical roles of exosomes in tendon healing is the stimulation of tenocyte proliferation and differentiation. Tenocytes are the primary cell type in tendons, responsible for the synthesis and maintenance of the ECM. In the context of Achilles tendinitis, where tenocyte function is often compromised, exosomes can deliver bioactive molecules that enhance tenocyte activity and promote tissue repair. Exosomes derived from MSCs to TSCs contain growth factors such as insulin-like growth factor-1 (IGF-1), FGF, and PDGF, which are known to stimulate cell proliferation and differentiation. These growth factors, delivered *via* exosomes, can activate signaling pathways such as the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and the mitogen-activated protein kinase (MAPK) pathway, leading to increased tenocyte proliferation and enhanced collagen synthesis.⁴⁹ Preclinical studies have demonstrated that treatment with exosomes results in a higher number of proliferating tenocytes at the injury site, along with an increased expression of tenocyte-specific markers such as tenomodulin and scleraxis. These effects contribute to the regeneration of tendon tissue and the restoration of its mechanical properties.⁵⁰

The synthesis and organization of the ECM are critical for the structural integrity and function of tendons. Exosomes play a significant role in enhancing ECM synthesis by delivering regulatory molecules that promote collagen production and ECM remodeling. Key components of the ECM, such as type I and type III collagen, are crucial for tendon strength and flexibility. Exosomes carry mRNAs and proteins that encode for ECM components and enzymes involved in ECM remodeling. For instance, exosomes can deliver mRNAs for type I and type III collagen, thereby directly contributing to the synthesis of these critical structural proteins.⁵¹ Additionally, exosomes modulate the activity of MMPs and their inhibitors (TIMPs), ensuring a balanced turnover of ECM components. In preclinical models of Achilles tendinitis, exosome treatment has been shown to significantly increase the deposition of type I and type III collagen, resulting in improved tendon structure and function. Histological analyses reveal a more organized and aligned collagen fiber arrangement in exosome-treated tendons compared to untreated controls, highlighting the role of exosomes in promoting effective ECM synthesis and remodeling.³⁵

Exosomes exhibit powerful immunomodulatory properties, crucial for fostering a conducive environment for tendon healing. They impact the activity of various immune cells, including macrophages, T cells, and dendritic cells, which are pivotal in the inflammatory response and tissue repair. A key mechanism by which exosomes modulate the immune response is through the induction of an anti-inflammatory macrophage phenotype (M2 macrophages).^{52,53} Exosomes derived from MSCs and TSCs contain miRNAs and proteins that encourage macrophages to polarize toward the M2 phenotype. M2 macrophages are characterized by their anti-inflammatory and tissue-regenerative properties. This phenotypic shift reduces the production of pro-inflammatory cytokines and increases the secretion of growth factors that aid in tissue repair.⁵³ Beyond macrophages, exosomes also influence T cell activity. They promote the expansion of regulatory T cells (Tregs) and suppress the activation of effector T cells.⁵⁴ This modulation helps maintain immune homeostasis and prevents excessive inflammation, which can hinder the healing process. By affecting these immune cells, exosomes help create an optimal environment for tendon repair and regeneration.

CHALLENGES AND FUTURE DIRECTIONS

One of the main technical challenges in using exosomes therapeutically is standardizing their isolation and characterization. Current isolation methods include ultracentrifugation, size-exclusion chromatography, precipitation, and immunoaffinity capture. Each method has its benefits and drawbacks, but there is no universally accepted standard protocol. Ultracentrifugation, considered the gold standard, is time-consuming and requires specialized equipment, making it impractical for large-scale clinical use. Characterizing exosomes is also challenging, as it requires precise identification of their size, concentration, and surface markers. Common techniques include NTA, flow cytometry, and electron microscopy. However, variability in these methods can lead to inconsistent results. Establishing standardized protocols for isolation and characterization is essential to ensure reproducibility and efficacy in clinical settings.⁵⁵

Regulatory approval for exosome-based therapies is another significant challenge.^{56,57} The complexity of exosome composition, which includes proteins, lipids, and nucleic acids, poses difficulties for regulatory agencies like the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in assessing their safety and efficacy. Currently, there are no specific guidelines for exosome therapies, and they are often categorized under the broader umbrella of cell-based therapies or biologics. To navigate these regulatory hurdles, robust clinical data demonstrating the safety, efficacy, and mechanism of action of exosome-based therapies are required. This includes comprehensive preclinical studies followed by well-designed clinical trials. Additionally, ensuring good manufacturing practice (GMP) compliance in the production of exosomes is essential to meet regulatory standards.⁵⁸ Collaborative efforts between researchers, clinicians, and regulatory bodies are needed to establish clear guidelines and streamline the approval process.

Future research should prioritize identifying the most effective sources of exosomes and optimizing their formulations for therapeutic use. While MSCs are a popular choice due to their regenerative properties, other sources such as TSCs, fibroblasts, and engineered cells may offer specific advantages depending on the target tissue and condition. Additionally, optimizing exosome formulations—including concentration, dosage, and delivery methods—is crucial to maximize their therapeutic potential.⁵⁵ Research into the stability and storage of exosomes will also be important to develop practical and scalable treatments. Combining exosome therapy with other treatments could enhance therapeutic outcomes. For instance, exosomes could be used alongside physical therapy, pharmacological agents, or other regenerative approaches such as platelet-rich plasma (PRP) to synergistically promote tendon healing. Exploring these combination therapies through rigorous preclinical and clinical studies will help identify the most effective treatment protocols. While initial studies have shown promising results, the long-term efficacy and safety of exosome-based therapies need thorough evaluation. Long-term follow-up studies are necessary to assess the durability of therapeutic effects and monitor for any delayed adverse reactions. Understanding the pharmacokinetics and biodistribution of exosomes *in vivo* will provide insights into their long-term behavior and potential risks.⁵⁹ Investigating the immunogenicity of exosomes is essential, especially given their potential to modulate immune responses. Ensuring that exosome therapies do not induce unintended

immune reactions or chronic inflammation is critical for their safe application in clinical settings.

CONCLUSION

The field of exosome therapeutics is still in its infancy, particularly in the context of tendon injuries. Significant challenges remain, including the need for standardized isolation and characterization protocols, the development of clear regulatory pathways, and a more comprehensive understanding of the long-term effects of exosome treatment. As we look to the future, several key areas warrant further investigation. Optimizing exosome sources, dosages, and delivery methods will be crucial for maximizing therapeutic efficacy. The exploration of combination therapies, integrating exosomes with existing treatment modalities, may yield synergistic benefits. Additionally, long-term follow-up studies are essential to establish the durability of therapeutic effects and to monitor for any potential adverse reactions.

AUTHOR CONTRIBUTION STATEMENT

- Conceptualization – MJ and SR
- Manuscript writing – SR, SB, and NJ
- Manuscript revision – MJ and SM
- Data acquisition – NJ, SR, and SB
- Images – SM
- Supervision – MJ

All authors have agreed to the final version to be published and agree to be accountable for all aspects of the work.

ORCID

- Naveen Jeyaraman <https://orcid.org/0000-0002-4362-3326>
 Madhan Jeyaraman <https://orcid.org/0000-0002-9045-9493>
 Swaminathan Ramasubramanian <https://orcid.org/0000-0001-8845-8427>
 Sangeetha Balaji <https://orcid.org/0000-0002-1566-1333>
 Sathish Muthu <https://orcid.org/0000-0002-7143-4354>

REFERENCES

1. Lagas IF, Fokkema T, Bierma-Zeinstra SMA, et al. How many runners with new-onset Achilles tendinopathy develop persisting symptoms? A large prospective cohort study. *Scand J Med Sci Sports* 2020;30(10):1939–1948. DOI: 10.1111/sms.13760
2. Alrashidi Y, Fernandez-Marin MR, Galhous A, et al. Achilles Tendon and Athletes. In: IntechOpen; 2018. DOI: 10.5772/intechopen.76237
3. Ackermann PW, Renström P. Tendinopathy in sport. *Sports Health* 2012;4(3):193–201. DOI: 10.1177/1941738112440957
4. Maffulli N, Sharma P, Luscombe KL. Achilles tendinopathy: aetiology and management. *J R Soc Med* 2004;97(10):472–476. DOI: 10.1258/jrsm.97.10.472
5. He L, Yu T, Zhang W, et al. Causal associations of obesity with Achilles tendinopathy: a two-sample mendelian randomization study. *Front Endocrinol (Lausanne)* 2022;13:902142. DOI: 10.3389/fendo.2022.902142
6. Ackermann PW, Phisitkul P, Pearce CJ. Achilles tendinopathy—pathophysiology: state of the art. *J ISAKOS* 2018;3(5):304–314. DOI: 10.1136/jisakos-2017-000164
7. Klatte-Schulz F, Minkwitz S, Schmock A, et al. Different Achilles tendon pathologies show distinct histological and molecular characteristics. *Int J Mol Sci* 2018;19(2):404. DOI: 10.3390/ijms19020404
8. van der Vlist AC, Breda SJ, Oei EHG, et al. Clinical risk factors for Achilles tendinopathy: a systematic review. *Br J Sports Med* 2019;53(21):1352–1361. DOI: 10.1136/bjsports-2018-099991

9. Li HY, Hua YH. Achilles tendinopathy: current concepts about the basic science and clinical treatments. *BioMed Res Int* 2016;2016:6492597. DOI: 10.1155/2016/6492597
10. Chen XM, Wang X, Hou Z. Editorial: MSC-derived exosomes in tissue regeneration. *Front Cell Dev Biol* 2023;11:1293109. DOI: 10.3389/fcell.2023.1293109
11. Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. *Cell Biosci* 2019;9:19. DOI: 10.1186/s13578-019-0282-2
12. Muthu S, Bapat A, Jain R, et al. Exosomal therapy—a new frontier in regenerative medicine. *Stem Cell Investig* 2021;8:7. DOI: 10.21037/sci-2020-037
13. Wang Y, He G, Guo Y, et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. *J Cell Mol Med* 2019;23(8):5475–5485. DOI: 10.1111/jcmm.14430
14. Del Buono A, Chan O, Maffulli N. Achilles tendon: functional anatomy and novel emerging models of imaging classification. *Int Orthop* 2013;37(4):715–721. DOI: 10.1007/s00264-012-1743-y
15. Yu C, Deng L, Li L, et al. Exercise effects on the biomechanical properties of the Achilles tendon—a narrative review. *Biology (Basel)* 2022;11(2):172. DOI: 10.3390/biology11020172
16. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. *Arthritis Res* 2002;4(4):252–260. DOI: 10.1186/ar416
17. Abate M, Silbernagel KG, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? *Arthritis Res Ther* 2009;11(3):235. DOI: 10.1186/ar2723
18. Knapik JJ, Pope R. Achilles tendinopathy: pathophysiology, epidemiology, diagnosis, treatment, prevention, and screening. *J Spec Oper Med* 2020;20(1):125–140. DOI: 10.55460/QXTX-A72P
19. Kader D, Saxena A, Movin T, et al. Achilles tendinopathy: some aspects of basic science and clinical management. *Br J Sports Med* 2002;36(4):239–249. DOI: 10.1136/bjsm.36.4.239
20. Schulze-Tanzil G, Al-Sadi O, Wiegand E, et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. *Scand J Med Sci Sports* 2011;21(3):337–351. DOI: 10.1111/j.1600-0838.2010.01265.x
21. Gaida JE, Alfredson H, Forsgren S, et al. A pilot study on biomarkers for tendinopathy: lower levels of serum TNF- α and other cytokines in females but not males with Achilles tendinopathy. *BMC Sports Sci Med Rehabil* 2016;8:5. DOI: 10.1186/s13102-016-0026-0
22. Morita W, Dakin SG, Snelling SJB, et al. Cytokines in tendon disease: a systematic review. *Bone Joint Res* 2017;6(12):656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1
23. Ellis I, Schnabel LV, Berglund AK. Defining the profile: characterizing cytokines in tendon injury to improve clinical therapy. *J Immunol Regen Med* 2022;16:100059. DOI: 10.1016/j.regen.2022.100059
24. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. *Science* 2020;367(6478):eaau6977. DOI: 10.1126/science.aaau6977
25. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. *Int J Mol Sci* 2023;24(2):1337. DOI: 10.3390/ijms24021337
26. Xie S, Zhang Q, Jiang L. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. *Membranes* 2022;12(5):498. DOI: 10.3390/membranes12050498
27. Roszkowski S. Therapeutic potential of mesenchymal stem cell-derived exosomes for regenerative medicine applications. *Clin Exp Med* 2024;24(1):46. DOI: 10.1007/s10238-023-01282-z
28. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. *Clin Chim Acta* 2019;488:165–171. DOI: 10.1016/j.cca.2018.11.009
29. Wan R, Hussain A, Behfar A, et al. The therapeutic potential of exosomes in soft tissue repair and regeneration. *Int J Mol Sci* 2022;23(7):3869. DOI: 10.3390/ijms23073869
30. Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation. *Expert Opin Biol Ther* 2016;16(4):489–506. DOI: 10.1517/14712598.2016.1131976
31. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. *Hum Mol Genet* 2012;21(R1):R125–R134. DOI: 10.1093/hmg/dds317
32. Schwarzenbach H, Gahan PB. Exosomes in immune regulation. *Noncoding RNA* 2021;7(1):4. DOI: 10.3390/ncrna7010004
33. Kim DS, Lee G, Cho H, et al. Regenerative medicine in South Korea: bridging the gap between authorization and reimbursement. *Front Bioeng Biotechnol* 2021;9:737504. DOI: 10.3389/fbioe.2021.737504
34. Wang C, Xu M, Fan Q, et al. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. *Asian J Pharm Sci* 2023;18(1):100772. DOI: 10.1016/j.ajps.2022.100772
35. Zou M, Wang J, Shao Z. Therapeutic potential of exosomes in tendon and tendon–bone healing: a systematic review of preclinical studies. *J Funct Biomater* 2023;14(6):299. DOI: 10.3390/jfb14060299
36. Xu T, Lin Y, Yu X, et al. Comparative effects of exosomes and ectosomes isolated from adipose-derived mesenchymal stem cells on Achilles tendinopathy in a rat model. *Am J Sports Med* 2022;50(10):2740–2752. DOI: 10.1177/03635465221108972
37. Chamberlain CS, Clements AEB, Kink JA, et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing. *Stem Cells* 2019;37(5):652–662. DOI: 10.1002/stem.2988
38. Quintero D, Perucca Orfei C, Kaplan LD, et al. The roles and therapeutic potential of mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. *Front Bioeng Biotechnol* 2023;11:1040762. DOI: 10.3389/fbioe.2023.1040762
39. Kasula V, Padala V, Gupta N, et al. The use of extracellular vesicles in Achilles tendon repair: a systematic review. *Biomedicines* 2024;12(5):942. DOI: 10.3390/biomedicines12050942
40. Lyu K, Liu T, Chen Y, et al. A “cell-free treatment” for tendon injuries: adipose stem cell-derived exosomes. *Eur J Med Res* 2022;27(1):75. DOI: 10.1186/s40001-022-00707-x
41. Fang WH, Agrawal DK, Thankam FG. “Smart exosomes”: a smart approach for tendon regeneration. *Tissue Eng Part B Rev* 2022;28(3):613–625. DOI: 10.1089/ten.TEB.2021.0075
42. Wellings EP, Huang TCT, Li J, et al. Intrinsic tendon regeneration after application of purified exosome product: an *in vivo* study. *Orthop J Sports Med* 2021;9(12):23259671211062929. DOI: 10.1177/23259671211062929
43. Zhu Y, Yan J, Zhang H, et al. Bone marrow mesenchymal stem cell-derived exosomes: a novel therapeutic agent for tendon–bone healing (review). *Int J Mol Med* 2023;52(6):121. DOI: 10.3892/ijmm.2023.5324
44. Qin B, Bao D, Liu Y, et al. Engineered exosomes: a promising strategy for tendon–bone healing. *J Adv Res* 2023;52090-1232(23)00348-X. DOI: 10.1016/j.jare.2023.11.011
45. Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. *J Nanobiotechnology* 2023;21(1):14. DOI: 10.1186/s12951-023-01778-6
46. Wu R, Li H, Sun C, et al. Exosome-based strategy for degenerative disease in orthopedics: recent progress and perspectives. *J Orthop Translat* 2022;36:8–17. DOI: 10.1016/j.jot.2022.05.009
47. Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. *Ann N Y Acad Sci* 2017;1410(1):57–67. DOI: 10.1111/nyas.13469
48. Asgarpour K, Shojaei Z, Amiri F, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. *Cell Commun Signal* 2020;18(1):149. DOI: 10.1186/s12964-020-00650-6
49. Citro V, Clerici M, Boccaccini AR, et al. Tendon tissue engineering: an overview of biologics to promote tendon healing and repair. *J Tissue Eng* 2023;14:20417314231196275. DOI: 10.1177/20417314231196275
50. Ramires LC, Jeyaraman M, Muthu S, et al. Application of orthobiologics in Achilles tendinopathy: a review. *Life (Basel)* 2022;12(3):399. DOI: 10.3390/life12030399

51. Kim HI, Park J, Zhu Y, et al. Recent advances in extracellular vesicles for therapeutic cargo delivery. *Exp Mol Med* 2024;56(4):836–849. DOI: 10.1038/s12276-024-01201-6
52. Chen SH, Chen ZY, Lin YH, et al. Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized Achilles tendons. *Int J Mol Sci* 2021;22(22):12373. DOI: 10.3390/ijms22212373
53. Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics. *Signal Transduct Target Ther* 2023;8(1):207. DOI: 10.1038/s41392-023-01452-1
54. Li P, Liu C, Yu Z, et al. New insights into regulatory T cells: exosome- and non-coding RNA-mediated regulation of homeostasis and resident treg cells. *Front Immunol* 2016;7:574. DOI: 10.3389/fimmu.2016.00574
55. Jeyaraman M, Muthu S, Jeyaraman N. Challenges in the clinical translation of exosomal therapy in regenerative medicine. *Regen Med* 2022;17(4):193–197. DOI: 10.2217/rme-2022-0003
56. Consumer Alert on Regenerative Medicine Products Including Stem Cells and Exosomes. FDA. Published online April 9, 2024. Accessed July 15, 2024. <https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes>
57. Cheng K, Kalluri R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. *Extracellular Vesicle* 2023;2:100029. DOI: 10.1016/j.vesic.2023.100029
58. Chen YS, Lin EY, Chiou TW, et al. Exosomes in clinical trial and their production in compliance with good manufacturing practice. *Tzu Chi Med J* 2020;32(2):113–120. DOI: 10.4103/tcmj.tcmj_182_19
59. Sharma A, Yadav A, Nandy A, et al. Insight into the functional dynamics and challenges of exosomes in pharmaceutical innovation and precision medicine. *Pharmaceutics* 2024;16(6):709. DOI: 10.3390/pharmaceutics16060709