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ABSTRACT 

Distal radius fractures (DRF) are among the most common fractures and are often treated surgically. The accuracy 

and effectiveness of the surgical procedures greatly depend on the correct classification of distal radius fractures. Wrist 

fractures are the most commonly misclassified because of the wrist bone’s complex anatomical structure, including 

several different bones. Thus, it is evident that models based on machine learning (ML) and artificial intelligence (AI) 

are required, with an emphasis on making them user-friendly for everyday clinical practice. Hence, this study proposes 

the Deep Convolutional Neural Network-based Distal Radius Fracture Classification Model (DCNN-DRFCM) to 

diagnose DRFs using anteroposterior and lateral wrist radiographs. The goal of this work is to develop an artificial 

intelligence system that can learn to utilize X-ray pictures to correctly diagnose distal radius fractures with a small 

amount of information. Labelling assessments with fractures and overlaying fracture masks generates images that may 

be used for testing and training segmentation and classification methods. The DCNN model analyzed DRF based on 

three views: lateral, anteroposterior, and lateral and anteroposterior views. The experimental outcomes demonstrate that 

the recommended model increases the classification accuracy rate of 99.3%, sensitivity rate of 96.5%, specificity rate of 

97.8%, and F1-score rate of 95.6% and reduces the error rate of 11.2% compared to other popular approaches. 

Keywords: distal radius fracture; classification; deep convolutional neural network; radiological images; classification; 

artificial intelligence 

1. Introduction 

Distal radius fractures at the wrist are the most common upper 

extremity fractures[1]. Consequently, they make up many of the 

injuries seen in clinics and emergency departments worldwide. Wrist 

injuries affect tens of millions of individuals annually worldwide[2]. 

X-ray imaging, which has been used for over a century, is still a 

common mode of diagnosis[3]. Diagnosis of distal radius fractures 

using X-rays is crucial for treatment purposes. The radiographic 

features of the fracture pattern are one of the parameters that 

determine the precise course of treatment when a diagnosis has been 
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established[4]. Immobilization in a cast, reduction in and casting and various internal fixation procedures are 

all possible treatment options[5]. The cornerstone of the therapy includes bringing the fracture components 

back into proper alignment and keeping them there until sufficient healing has taken place[6]. Prognosis is 

more likely to be negatively impacted in older individuals if fractures are not treated promptly, mainly 

because of their diminished body function and low physical fitness[7]. This has increased the interest in 

reliable augmentation tools for automatic fracture identification[8]. 

Despite recent advances in artificial intelligence (AI) surpassing orthopaedics professionals in 

automated fracture detection, deep learning of convolutional neural networks (CNNs) continues to require 

large amounts of data (1000 images or more) to increase diagnostic accuracy[9]. Misdiagnoses may cause 

unnecessary suffering and financial losses; however, machine learning can streamline and improve the 

diagnosing of distal radius fractures from X-ray images[10]. To solve the diagnostic issues, CNNs learn 

discriminating features from the pixel information of large-scale datasets[11]. The artificial intelligence model 

relied on a convolutional neural network (CNN), a category of DL architecture that uses repeated 

convolution operations on a picture to extract feature[12]. Feeding an input image into the model’s learnt 

filters may identify which visual features are most important for the output image[13]. Training supervised 

convolutional neural network (CNN) models often requires massive volumes of labelled data. Parameter 

optimization and interval validations were done using the validation data set[14]. Using test data sets that the 

trained model had never seen before, researchers looked for symptoms of fractures in radiographs of young 

people’s wrists[15]. One way to describe the challenge of fracture identification in vision-based models is as 

follows: using fracture characteristics to appropriately categorize radiography images into fracture and non-

fracture classes[16]. Because of their capacity to highlight the apparent fracture site, the radiologist can more 

readily relate to and use the findings of object identification and segmentation in clinical practice, in contrast 

with image classification, which initially does not provide spatial information[17]. 

The key contribution of the article is 

• Designing the Deep Convolutional Neural Network-based Distal Radius Fracture Classification Model 

(DCNN-DRFCM) to diagnose DRFs using anteroposterior and lateral wrist radiographs. 

• Evaluating the mathematical model of Deep Convolutional Neural Networks for classifying the fracture 

and non-fracture of DRFs. 

• The numerical findings have been employed, and the suggested DCNN-DRFCM model enhances the 

sensitivity, accuracy, F1-score, specificity and reduced error ratio compared to existing approaches. 

The remainder of the article is pre-organized: section 2 discourses the related survey, section 3 suggests 

the DCNN-DRFCM, section 4 reflects the findings, and section 5 concludes the research article.  

2. Related study 

Hardalaç et al.[18] suggested the ensemble models called wrist fracture detection-combo (WFD-C). 

Utilizing DL on wrist X-ray pictures, this research hopes to identify fractures and aid doctors in diagnosing 

them, especially in emergencies. The WFD-C model achieved the best detection performance out of 26 

fracture detection models, with an average precision (AP50) of 0.8639. As part of the continuing 

collaboration project designated 071813 with Huawei, Gazi University, and Medskor, the Huawei Turkey 

R&D Center helps this work. 

Hržić et al.[19] proposed the YOLOv4 method for Fracture Detection in Paediatric Wrist Radiographs. 

There was a substantial difference between the four radiologists and the YOLO 512 Anchor model-AI, the 

top-execution YOLOv4-based approach (Radiologist mean AUC-ROC = 0.831 ± 0.075, AI AUC-ROC = 

0.965). Moreover, the author demonstrated that the AI model considerably enhanced the performance of 
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three out of five radiologists. The results are supported by a comprehensive dataset of 19,700 X-ray pictures 

of children. 

Meena and Roy[20] recommended Deep Supervised Learning (DSL) for Bone Fracture Detection from 

Radiological Images. Fracture identification is an area where CNN-based models, particularly InceptionNet 

and XceptionNet, excel, according to this study’s findings. This research aimed to demonstrate how DL is 

used in medical imaging to aid radiologists in diagnosing accurately. The author has covered the history, 

present, and future of deep learning (DL) in bone imaging and its difficulties and obstacles. 

Malik et al.[21] discussed the Hand-Crafted and Deep Feature Fusion and Selection and Wolf 

Optimization Algorithm (HC-DFFS-WOA). The method for fractured elbow classification is based on the 

whale optimization approach. Handcrafted features, like the histogram of oriented gradient (HOG) and the 

local binary pattern (LBP), are retrieved from the input photos. The best features are chosen utilizing 

principal component analysis (PCA) and then sequentially combined into single-feature vectors with lengths 

of N × 2125. For the classification of elbow fracture, the suggested method has a kappa value of 0.943% and 

an accuracy of 97.1%. 

Rashid et al.[22] deliberated the Deep CNN and long short-term memory (DCNN-LSTM) to Identify 

Human Wrist Fractures. To address the issue of class imbalance, this framework employs data augmentation 

to generate a rotated oversample of imageries for minority classes during training. A 28-layer dilated CNN 

(DCNN) is fed with pre-processed and augmented standardized imageries to extract deep, valuable features. 

After that, the suggested LSTM network is given deep features to differentiate between normal and wrist 

fractures.  

The study[23] suggests a paradigm for sentiment analysis that uses hybridized neural networks and a 

modified word frequency-inverse document frequency method. Following data preprocessing, a non-linear 

global weighting factor is included to enhance the basic term frequency-inverse document frequency scheme. 

This improved methodology combines the k-best selection method to vectorize textual characteristics. After 

that, the convolutional neural network and long short-term memory that comprise the deep neural network 

get embedded features. It is compared to multiple state-of-the-art baseline models across several 

performance indicators and datasets to show how effective the proposed model is. 

After preliminary data processing, the study[24] suggests a Hybridised Deep Neural Network-based 

framework for sentiment analysis to optimize feature space with the help of sentiment information extracted 

using our specially developed SentiWordNet lexicon-linked fitness function. It achieved this by modifying 

the dispersive fly optimization by adjusting its neighbour counterpart and then applying Neighbour Adjusted 

Dispersive fly optimization. This change aids in evading the local ideal solution and bolsters the optimization 

process so it may more effectively approach the global optimal solution. The proposed hybrid approach is 

compared to several state-of-the-art approaches using a range of performance measures to prove its efficacy. 

The investigation shows numerous issues with prevailing methods in reaching great precision, 

sensitivity, specificity, and low error rates. Hence, this study proposes the Deep Convolutional Neural 

Network-based Distal Radius Fracture Classification Model (DCNN-DRFCM) to diagnose DRFs using 

anteroposterior and lateral wrist radiographs. 

3. Deep neural network-based distal radius fracture classification model 

(DNN-DRFCM) 

One of the most frequent types of fractures, distal radius fractures, may happen to younger persons due 

to high-energy trauma or to older adults due to low-energy trauma. Untreated fractures may progress to 

degenerative diseases; therefore, getting them treated properly is essential. In adults, almost 20% of fractures 

are distal radial fractures (DRF). The gold standard for diagnosing DRFs is still plain radiography. In an 
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outpatient clinic or emergency department, non-orthopaedic surgeons may be the main doctors who examine 

fractures, and since DRF is sometimes subtle, the fracture could pass undetected. Subsequent problems, 

including malunion and osteoarthritis, may develop from untreated fractures. Consequently, there is a need 

for a better way to identify fractures quickly and accurately. Automated fracture diagnosis in various 

anatomical areas has lately seen impressive advancements using deep learning-based systems (DLS). This 

includes the lower and upper extremities, including the elbow, foot, knee, shoulder, ankle, femur, pelvis, 

humerus, tibia and hip. An area of machine learning, deep learning, investigates how an artificial system may 

learn from its own experiences (e.g., input data or feedback) and perform better at any given task over time 

without being explicitly programmed. We should train a CNN classification model to identify wrist fractures 

from anteroposterior and lateral radiographs and then use the model to diagnose the fracture autonomously. 

This study proposes the Deep Convolutional Neural Network-based Distal Radius Fracture Classification 

Model (DCNN-DRFCM) to diagnose DRFs using anteroposterior and lateral wrist radiographs. 

Figure 1 shows the radiographic image samples from the dataset used in this research. The normal 

angle of radial inclination is 15° to 25°. An impaction fracture in the metaphysis of the distal radius might 

explain the abnormal angle. There are other parameters like the ulnar variance, ulnar height, and dorsal distal 

radius inclination to diagnose fractures. The comprehension of the relationship between radiographic 

findings and clinical outcomes is still lacking. The surgeon may have greater clarity of the fracture and its 

reduction if they are familiar with the radiographic landmarks, parameters, and damage patterns. 

 
Figure 1. Radiographic image samples from the dataset used in this research (a) normal; (b) abnormal images. 

Figure 2 shows the proposed DCNN-DRFCM model. The Saveetha Medical College Hospital’s image 

archiving and communication system was used to retrieve 100 radiographic images of the wrist[25]. The 

method is error-sensitive if imageries are captured in unaware conditions or have unpredicted noise added to 

them. Before any blocks were applied, the data received pre-processing employing normalization. Global 

contrast normalization with initial clipping was performed after reading each radiograph in this investigation. 

Among the several subfields of DL, CNN-based feature extraction models have consistently outperformed 

the competition in an extensive range of inspection tasks. Image resolution and feature specifics are major 

factors in determining the hyper-parameters for feature extraction methods. So, to automatically extract the 

fracture trace map from tumble tunnel wrist images, it is required to rearrange the current CNN-based 

methods with well-stated application criteria, considering the intricacy of feature extraction and the 
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carefulness of the fracture trace. This work assessed how well the CNN classification algorithm could 

identify DRFs from lateral and anteroposterior wrist radiographs. A deep-learning model for accurate distal 

radius fracture identification was developed in this work using pixel-level fracture annotations. Object 

detection networks provide more useful information than classification networks by identifying where the 

fracture is. 

 
Figure 2. Proposed DCNN-DRFCM model. 

The fracture line, which represents the texture data from the medical image, allows the doctor to assess 

the fracture. This work improves the picture texture information and then uses ResNet to identify fractures 

and non-fractures. One may apply the Sobel, Laplace, Gabor, or Schmid filters on an image’s texture. 

According to our experimental validation, the Schmid filter outperforms all others when identifying fractures. 

The rotation invariance of the Schmid filter allows it to capture the description of the invariant texture. For 

photographs of bones, the Schmid filter can characterize fracture lines and their margins. The kernel function 

is primarily responsible for generating the transform matrix in a Schmid filter, which is then used to perform 

the convolution operation on the fixed matrix. The following is the function of its kernel: 

𝐹(𝑟, 𝜌, 𝜏) = cos (
2𝜋𝜏𝑟

𝜌
) 𝑒

−
𝑟2

2𝜌2 ,    𝑟 = √𝑥2 + 𝑦2 (1) 

As shown in Equation (1), where 𝜌 denotes the standard deviation of the Gaussian,𝜏  indicates the 

number of cycles of the harmonic function within Gaussian envelopes of the filters, and (𝑥, 𝑦) signifies the 

coordinate position of pixel point. 

Figure 3 shows the DCNN model for distal radius fracture classification. The DCNN model included 

convolutional layers, input layers, region of interest (ROI) layers, feature map layers, classifier, pooling, and 

output layers. ROI pooling is used to classify the input images and establish the needed area based on the 

location of interest. At each sliding window, the proposal’s area is anticipated. The next step is to forecast 

the bounding box’s offset value. Compared to previous networks, this one is faster and more efficient in 

detecting risks. The initial layer of the suggested model is the input layers, which accepts the X-ray images 

of the dimensions 𝑄 ×  𝑃 and automatically convert them into 𝑁 ×  𝑀. The X-ray images are garnered to 

particular sizes and fed to convolutional layers. A received image is convolved with a kernel of a certain size 

in the convolutional layer. A default arrangement is included in the proposed model. Reducing the effort and 

processing cost of the model, the convolution layer reduces the size of the input X-ray picture. Examining 

Equation (2) reveals the size of the convolution layer. 
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Figure 3. DCNN model for distal radius fracture classification. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒 =
(𝑗 − 𝑙) + 1

𝑤
 (2) 

As inferred from Equation (2), where  𝑗 indicates the input dimensions, 𝑙 denotes the kernel dimensions, 

and 𝑤 is the stride dimensions. 

The pooling layer performs down-sampling on the X-ray images to facilitate additional input to the 

subsequent layer. For optimal results, the model used max-pooling across the board. Here is the output of the 

pooling layer, as described in Equation (3). 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒 =
(𝑗 − 𝑞) + 1

𝑤
 (3) 

As found in Equation (3), where 𝑗 denotes the input dimensions, q indicates the pooling dimensions, 

and w signifies stride sizes. The suggested study uses ReLu as an activation function; unlike other activation 

functions, its gradients are either 0 or 1, and it disregards negative values. This allows for much quicker 

computing. The Equation (4) is used to display the ReLu activation function. 

𝑥 = max(0, 𝑦) (4) 

With the fracture locations preserved, the feature maps provide comprehensive X-ray image data. If, for 

example, an X-ray picture shows fractures on the right sides, the activation of convolutional layers will cause 

the fractures to appear on the right side of the resulting feature map, which incorporates all features from the 

input image. 

Layers of fully connected neural networks using a Softmax classifier followed the convolutional layer. 

Softmax classifiers form the output layers as an extension of the logistic and normalized exponential 

functions. These classifiers take K-dimensional vectors of arbitrary real value and transform them into K-

dimensional vectors of real value in ranges (0, 1) that add up to one for specificity analysis. The following 

Equation (5) gives the function: 

(𝑋 = 𝑗|𝑦, 𝑆, 𝑎) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑆𝑦 + 𝑎) =
𝑒𝑆𝑗𝑦+𝑎𝑗

∑ 𝑒𝑆𝑗𝑦+𝑎𝑗
𝑖

 (5) 

The model’s interpretation was the class with the largest probability, and the output of the Softmax 

layers was the conditional likelihood distributions across the two target classes. 

Equation (6) defines a cross-entropy loss function that may be used to calculate the discrepancy 

between the feature map forecasted by the DCNN model and the manually annotated fracture trace maps for 

sensitivity analysis: 

𝐿 = − ∑ 𝑠0 log 𝑄𝑟(𝑄𝑗 = 1) − ∑ s1log 𝑄𝑟(𝑄𝑗 = 0)

𝑗∈𝐻−𝑗∈𝐻+

 (6) 

As shown in Equation (6), where 𝑠0 and s1 are the loss weight of the fractures and non-fractures 

classification, 𝑄𝑟(𝑄𝑗) denotes the likelihood distribution of the predicted feature maps, and 𝐻 + and 𝐻 − 

represent the non-fracture pixel and the fracture pixel of input images, correspondingly. Every convolutional 
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layer produces forecast feature maps and respective side-outputs loss labelled 𝐿𝑠𝑖𝑑𝑒−𝑜𝑢𝑡𝑝𝑢𝑡
𝑗

, where 𝑗 is layer 

numbers. The side-output layer is concatenating to the last fused maps, which creates the fused loss-labelled 

𝐿𝑓𝑢𝑠𝑒𝑑 . The total cross-entropy loss functions are determined by adding the loss values of the fused map and 

the convolutional layer as in Equation (7) for the predicted error rate: 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝐿𝑠𝑖𝑑𝑒−𝑜𝑢𝑡𝑝𝑢𝑡
𝑗 + 𝐿𝑓𝑢𝑠𝑒𝑑  (7) 

Before beginning the training process, the following first model hyper-parameter must be set: number of 

epochs, learning rate, batch size, momentum, and weight decay. The number of photos used to train the 

target model is called the batch size. The learning rate is how often the optimization algorithm updates the 

network weights. The loss function’s regularization term has a coefficient called weight decay. In the 

stochastic gradient descent (SGD) process, momentum regulates the model’s convergence rate. Every time a 

network receives all the data needed for a forward computation and backpropagation, it is called an epoch. 

To achieve optimal performance, it is recommended to modify the number of epochs to prevent overfitting or 

underfitting.  

Algorithm 1 shows the fracture detection algorithm based on the DCNN model. This study has 

incorporated data augmentation (DA) and transfer learning (TL) techniques to enhance CNN’s predictive 

ability. The data augmentation can solve the issue of insufficient data for model training. The zooming 

technique is used on the original image data to expand the data amount to produce images with a similar 

label. TL models are used mostly for image classification-related problems. The proposed DCNN model has 

been confirmed concerning hyper-parameters such as optimizer SGD and ADAM with a learning rate of 0.01, 

several epochs of 100, and batch size of 120. The 70% of data for training and 30% for the testing of the 

model has been used for both data sets (real and augmented). The proposed DCNN-DRFCM model increases 

the specificity, classification accuracy, F1-score ratio, sensitivity, and reduced error rate compared to 

existing approaches. 

Algorithm 1 Fracture Detection Algorithm based on the DCNN model 

1: Input: Labeled Training Data Y, M is total training data. For 𝑌𝑗 there is an original X-ray image and an annotated binary 

mask, 𝑌𝑗 = 𝑖𝑚𝑔𝑗, 𝑚𝑎𝑠𝑘𝑗 

2: Output 𝑋 = {𝑋1 , 𝑋2, … 𝑋𝑀}, 𝑋𝑗 is the X-ray image with detection bounding boxes. 

3: Load 𝑌 from the training dataset 

4: for 𝑙 = 1, … , 𝑒𝑝𝑜𝑐ℎ_𝑚𝑎𝑥 do 

5: for local epoch ← 1 to E do 

6: Optimize the hyperparameters 
7: End  

8: End  

9: Update model parameters 
10: Return 

4. Results and discussion 

This study proposes the Deep Convolutional Neural Network-based Distal Radius Fracture 

Classification Model (DCNN-DRFCM) to diagnose DRFs utilizing lateral and anteroposterior wrist 

radiographs. The Saveetha Medical College Hospital’s image archiving and communication system was used 

to retrieve 100 radiographic images of the wrist[25]. Radiologists used bounding boxes to label all fractures 

and bones. The dataset was divided into a validation set of 10% and a training set of 90% to train fracture 

localization techniques for lateral and anteroposterior images. 

The process of organizing and managing data at every stage of its lifespan is known as data curation. 

Data identification, description, preservation, transformation, and use are all part of its characteristics. Data 

curation services are used to ensure data is trustworthy, easily discoverable, compatible with other systems, 

and interoperable. Organizations risk never realizing their data’s full potential without efficient data curation. 
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Data curation systematically organizes, manages, and enriches data to guarantee accessibility, relevance, and 

quality. Data curation entails structuring and integrating information gathered from many sources. It entails 

annotating, publishing, and presenting the data in a way that maintains its worth and makes it accessible for 

future use and preservation. An unsupervised machine learning technique, which involves clustering phrases 

according to their similarity, is crucial to active annotation because it allows the organization of training data 

to propose annotation labels to human annotators. By using active annotation, human annotators—often 

medical experts—can concentrate on challenging, untrustworthy medical claims. Furthermore, our strategy 

drastically cuts down on the cognitively costly process of context switching as the annotators handle groups 

of sentences with comparable semantic content. The annotators are ultimately responsible for determining 

the data’s labels. 

All of the experiments in this research use cross-validation to provide the most accurate evaluations 

possible. The performance of the recommended DCNN-DRFCM model has been analyzed based on metrics 

like F1 score, sensitivity, classification accuracy, error rate and specificity compared with existing wrist 

fracture detection-combo (WFD-C)[18], Deep Supervised Learning (DSL)[20], Hand-Crafted and Deep Feature 

Fusion and Selection and Wolf Optimization Algorithm (HC-DFFS-WOA)[21], Deep CNN and long short-

term memory (DCNN-LSTM)[22]. Table 1 demonstrates the experimental setup. 

Table 1. Experimental setup. 

Parameter Value 

Learning Rate 0.01 

Filter Size 15 

Activation Function ReLU 

The number of Feature Map 10 to 200 

The number of input vector 128 

Maximum epochs 5000 

Pooling Size 3 

The number of Input Channel 6 

The probability of dropout 0.7 

1) Classification Accuracy Ratio 

Treatment efficacy and patient care depend on accurate fracture classification from medical imaging, 

especially wrist X-rays. Because fracture skeleton maps are created by skeletonizing fracture trace maps, this 

research assesses the accuracy of pixel-level fracture feature extraction. Feature extraction from images is 

made efficient using a lightweight CNN architecture. To accurately diagnose fractures, deep-learning 

classifiers are given these extracted features. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (8) 

As shown in Equation (8), where TP indicates True Positive (Recognized Properly), TN represents True 

Negative (Recognized Wrongly), FP symbolizes False Positive ( Disallowed Properly), and FN indicates 

False Negative ( Disallowed Wrongly). Figure 4 shows the classification accuracy rate. 
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Figure 4. Classification accuracy ratio. 

2) Sensitivity Ratio 

To optimize the proposed model, it is important to include factors such as the cost of positive and 

negative misdiagnoses at both the individual and population levels. As with BoneView, substantially trained 

models like this need to deliberately balance sensitivity and specificity within the context of their intended 

purpose. With 95% confidence intervals, this study could evaluate the sensitivity, specificity, area under the 

receiver operating characteristics curves, and negative and positive predictive values. The model’s 

accurateness in forecasting negative and positive results would be assessed by re-examining the initial 

radiography images. In addition, the research found that the DCNN could identify a rather visible fracture on 

the test set, even though the network is generally fairly sensitive. Based on Equation (6), the sensitivity ratio 

has been identified. Figure 5 shows the sensitivity rate. 

 
Figure 5. Sensitivity ratio. 

3) Specificity Ratio 

Deep learning CNN can learn features that discriminate between a growth plate and a fracture, as our 

findings indicate that there are minimal false-positive marks owing to growth plates on pediatric radiographs. 

Despite a general tendency toward reduced specificity for radiographs acquired with a cast on both lateral 

and anteroposterior images, this research did not find a statistically significant difference in network 

performance across fractures with and without casts. The reason for this may be the presence of cast-imposed 

linear artefacts that give the impression of fractures yet are just artefacts. According to this research, the 

anteroposterior and lateral views of fractures with little or no displacement were shown to be far less 

sensitive than fractures with substantial displacement. Because their identification relies on a small 

component of the overall image, slightly displaced fractures are inherently difficult to detect. Based on 

Equation (5), the specificity ratio has been identified. Figure 6 shows the specificity ratio. 
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Figure 6. Specificity ratio. 

4) F1-Score Ratio 

F1 score, precision, accuracy, and recall were the four assessment criteria used in the methods section. 

Both accuracy and recall are indicators of prediction quality; the latter shows the percentage of correctly 

diagnosed fractured instances, while the latter shows the proportion of incorrect predictions. Precision is the 

percentage of photos accurately predicted as having fractures as a percentage of all images. According to 

Equation (9), the F1 score is computed as the harmonic mean of recall and accuracy. This study averaged the 

accuracy, recall, and macro F1 score for 5-fold cross-validation. Accuracy was averaged over five folds to 

guarantee the findings’ stability further. Figure 7 demonstrates the F1-score ratio. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (9) 

 
Figure 7. F1-Score ratio. 

5) Error Rate 

Misdiagnosis of fractures, in particular, is prevalent in the emergency room due to the great volume of 

patients and the absence of time and sometimes resources for thorough examination. In the emergency 

department, numerous errors in interpreting images may be prevented if radiographs were either 

automatically processed or reviewed by a radiologist in real-time with AI support, aiding decision-making. 

In several experiments, this study monitored and simplified the learning rate to get the necessary minimal 

error value. It has a very accurate area under the curve (AUC) of 0.975 for fracture diagnosis. A 47% 

decrease in the diagnostic error rate among emergency department physicians was reportedly achieved with 

the use of this method. Out of all the reports, our program’s data use for learning was the lowest, ranging 

from 100th to one-thousandth per cent. Based on Equation (7), the error rate has been predicted. Figure 8 

shows the error rate. 
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Figure 8. Error rate. 

5. Conclusion 

This work presents a new way to assess and classify the DRF using computational modelling and ML 

approaches; this might help create real-time patient-specific treatment and rehabilitation programs. This 

study proposes the Deep Convolutional Neural Network-based Distal Radius Fracture Classification Model 

(DCNN-DRFCM) to diagnose DRFs using lateral and anteroposterior wrist radiographs. Using deep learning 

to speed up computational modelling calculations is an exciting new direction. As rapidly as DL prediction 

accuracy is sufficient, it will be possible to employ simulation findings rapidly in healthcare practice 

environments. A deep CNN gathers and classifies the depth data from images depicting DRF. The numerical 

findings demonstrate that the recommended model enhances the specificity rate of 97.8%, classification 

accuracy rate of 99.3%, F1-score rate of 95.6%, sensitivity ratio of 96.5%, and decreases the error rate of 

11.2% than other popular approaches. The network was trained using a smaller dataset compared to the X-

ray image computer vision identification, which may range from thousands of original images to hundreds of 

thousands. Future studies will identify the accurate location and size of the fracture and explore the study’s 

potential relevance to other long bones of the arms and legs. 
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