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Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need 
to diversify our artillery to incorporate a plethora of diagnostic and therapeutic 
methods to combat this disease. Currently, the most common causes of liver 
disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. 
Some of these chronic diseases have the potential to transform into hepatocellular 
carcinoma with advancing fibrosis. In this review, we analyse the relationship 
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between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects 
on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous 
ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that 
can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are 
required to understand the association between the gut microbiome and hepatic disease progression through 
which we can identify effective ways to deal with this issue.
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Core Tip: We explore the bidirectional impact of gut-liver interactions on liver disease, highlighting how gut microbiota 
metabolites affect metabolism. It suggests that altering gut microbiota composition could unveil new treatments for liver 
ailments. Future cohort studies using pan-omics will be crucial in understanding gut microbiome links to liver disease 
progression and finding effective interventions.
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INTRODUCTION
The liver and gut microbiota exhibit a complex, bidirectional relationship essential for maintaining metabolic equilibrium. 
Metabolic byproducts from the gut microbiome are transported to the liver via the portal vein, while the liver contributes 
to gut health by secreting bile and immunoglobulins into the intestinal tract[1]. This physiological exchange is crucial for 
sustaining a well-balanced metabolic state[2]. In various hepatic disorders, there is a notable perturbation of this 
equilibrium, a condition known as dysbiosis. Such imbalance is characterized by a decrease in microbial diversity and 
proliferation of pathogenic bacteria within the gut[3,4]. This altered microbial landscape is indicative of the significant 
role that the gut microbiota plays in the pathology of liver diseases. Dysbiosis is influenced by a confluence of genetic 
factors, environmental exposures, and lifestyle choices, which collectively contribute to the progression of liver diseases.

The mechanisms through which dysbiosis exacerbates liver disease are multifaceted. Primarily, it leads to immune 
dysregulation, which allows for the unchecked progression of disease. Additionally, alterations in energy utilization 
occur, and there is an increase in intestinal permeability. This heightened permeability facilitates the translocation of toxic 
metabolites from the gut into the liver. Once in the liver, these toxic substances trigger a pro-inflammatory response. This 
inflammatory state not only worsens liver function but also promotes the progression of liver disease, establishing a 
deleterious cycle that further impairs both liver and gut health[4-7]. Thus, understanding the interplay between the gut 
microbiota and liver function is critical for identifying potential therapeutic targets aimed at restoring this crucial phy-
siological balance. This manuscript describes the pathways connecting the gut microbiota with liver diseases, explores the 
clinical relevance of the gut-liver axis across different liver conditions, and evaluates the effectiveness of treatments 
involving probiotics, prebiotics, synbiotics, and faecal microbiota transplantation.

ANATOMY AND PHYSIOLOGY OF GUT-LIVER AXIS
The gut and liver are interlinked majorly through the portal circulation[8-10]. This acts as a medium through which gut 
metabolites reach the liver. In between there exists a selectively permeable barrier through which nutrients and essential 
microbial products are translocated. It also acts as a barrier to harmful bacterial products and microbes. This function is 
achieved through tight junctions between enterocytes which predominantly consist of desmosomes, claudins, occludins, 
E-cadherins, and adhesion proteins. The short-chain fatty acids produced by the microbiota by the breakdown of dietary 
fibres have diverse roles such as energy production for intestinal cells, regulating motility of the gut, immune regulation, 
absorption of nutrients and anti-inflammatory products, and more importantly, altering carbohydrate and lipid meta-
bolism[11]. Butyric acid is essential for maintaining the intestinal barrier[12]. Based on studies on mice, butyric acid and 
acetic acid act as the principal source of energy for intestinal cells, and their absence increases utilization of glucose and 
eventually leads to lipogenesis[13]. Added to this, it was found that activation of sterol and cholesterol regulatory 
element binding protein was inhibited by butyric acid which results in inhibition of lipogenesis[14]. Unlike butyric and 
acetic acid, propionic acid (mostly produced by pathogenic bacteria) was found to have an adipogenic effect that plays a 
major role in non-alcoholic fatty liver disease (NAFLD)[15], which summarizes the effects of the microbiota on the liver. 
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The effects of primary bile acids (PBAs) on the gut microbiota are significant as they control the overproduction of 
pathogenic bacteria. In the gut, the PBAs are converted to secondary bile acids by bacteria. These bile acids act on 
farnesoid X receptor (FXR) receptors and activate the transcription of protective genes. FXR also decreases the expression 
of SREBP-1c and LXR, which results in decreased lipogenesis and gluconeogenesis[16]. Another study stated that FXR 
enhanced glycogenesis through upregulation of GLUT-4, PPAR-gamma, GLP-1, etc., thus improving insulin sensitivity as 
well[17]. The culmination of all the abovementioned effects is vital to establish homeostasis. The overall gut-liver axis and 
the role of gut microbiota in maintaining the liver homeostasis is illustrated in Figure 1.

ROLE OF GUT MICROBIOTA IN LIVER DISEASES
The human gut is host to 2172 taxonomically distinct species, predominantly composed of the phyla Firmicutes, Bacte-
roidetes, Fusobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia[18-21]. Each harbours a unique microbial 
composition, influenced by factors such as age, sex, genetics, environmental exposures, lifestyle choices, medications, and 
disease states. Commonly, in the context of disease, the gut microbiota is characterized in terms of the Gram-positive 
Firmicutes and the Gram-negative Bacteroidetes, which are crucial in regulating the immune response and metabolic 
processes, and maintaining gut homeostasis[22]. Short-chain fatty acids (SCFAs) not only support the integrity of the 
intestinal barrier but also stimulate the production of antimicrobial peptides like immunoglobulin A. This is facilitated by 
alterations in mucin layers on the intestinal epithelium and increased mucin production via microbial products[20]. 
Another pathway involves the sustained activation of Toll-like receptors that boost mucin and antimicrobial peptide 
levels[23]. Additionally, the gut microbiota modifies bile acids that influence FXR signalling pathways, thereby modula-
ting inflammatory responses, neutralizing endotoxins, and preventing bacterial proliferation[24]. Li et al[25] observed that 
SCFAs produced by Faecalibacterium, Coprococcus, and Ruminococcus had a suppressive effect on pro-inflammatory 
mediators.

In alcoholic individuals, an increase in Proteobacteria, Streptococci, and Enterobacteria, and a decrease in Bacteroi-
detes, Faecalibacterium prausnitzii, Clostridium leptum, and Lactobacillus have been documented[25,26], which led to 
reduced anti-inflammatory molecule production and enhanced endotoxemia. NAFLD patients show a rise in alcohol-
producing bacteria (Proteobacteria-Enterobacteriaceae), which disrupt gut epithelial integrity and facilitate ethanol 
transport to the liver, thereby inducing oxidative stress and liver damage[27]. In non-alcoholic steatohepatitis (NASH), 
there is an increase in Firmicutes and a reduction in Bacteroidetes, Proteobacteria, and Actinobacteria[28,29]. A recent 
study indicated that high levels of alcohol-producing Klebsiella pneumoniae could lead to fatty liver disease via the 2,3-
butanediol fermentation pathway, with subsequent alcohol transport to the liver mirroring previously described 
mechanisms[30]. Patients with hepatitis B virus infections show elevated levels of Veillonella, Fusobacteria, Prevotella, 
and Acinetobacter[31]. In cirrhosis patients, a reduction in the Bifidobacterium/Enterobacteriaceae ratio, a key indicator 
of microbial colonization resistance, correlates with increased endotoxemia and IL-6 levels, thereby exacerbating liver 
inflammation[32]. Bajaj et al[33] demonstrated that improvements in microbiome diversity following liver transplantation 
were associated with amelioration of liver cirrhosis symptoms. The various interactions between the gut microbiota and 
liver conditions are summarized in Table 1.

As cirrhosis progresses from compensated to uncompensated to acute-on-chronic liver failure, there is a marked 
reduction in metagenomic richness.

MECHANISMS LINKING GUT MICROBIOTA TO HEPATIC DISEASES
The onset of liver pathology is often precipitated by dysbiosis, which leads to enhanced intestinal permeability. Various 
factors, including diet, environment, lifestyle, medications, age, and gender, can alter the gut microbiome[34]. This 
alteration facilitates the release of lipopolysaccharide (LPS), endotoxins, pathogen-associated molecular patterns, 
damage-associated molecular patterns, and other gut-derived metabolites into the bloodstream. Once in circulation, LPS 
interacts with Toll-like receptor 4 (TLR4) on endothelial cells, Kupffer cells, and hematopoietic stem cells, and with TLR9 
on dendritic cells. Activation of TLR4 also stimulates liver stellate cells, initiating fibrogenesis and the release of pro-
inflammatory and profibrotic mediators like TNF-α, IL-1β, and interleukin (IL)-6, along with chemokines such as CCL2, 
CXCL2, and CXCL10[35,36]. These inflammatory responses and metabolic disruptions elevate serum-free fatty acid and 
triglyceride levels, leading to their accumulation in the liver and further inflammatory changes[37]. LPS also affects the 
secretion of adipokines such as adiponectin, IL-6, and leptin, which enhance hepatic inflammation[38,39]. Moreover, LPS 
reduces adrenergic stimulation, diminishes the protective effects of IL-10, and decreases reactive oxygen species (ROS) 
production[40-42]. Enhanced TLR signalling in the colonic mucosa also increases the expression of the inflammasome 
nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 in patients with NASH rather 
than simple steatosis[43].

Another pathway of liver injury involves alterations in bile acid metabolism. Normally, PBAs are converted into 
secondary bile acids such as lithocholic acid and deoxycholic acid (DCA) through 7α-dehydroxylation by bacteria like 
Lachnospiraceae and Blautia[9,44]. In chronic liver conditions, the inflammatory mediators released inhibit PBA synthesis 
via CYP7A1, creating a conducive environment for pathogenic bacteria such as Enterobacteriaceae and Porphyromon-
adaceae due to the reduced production of antimicrobial agents typically stimulated by PBAs[45]. Alternatively, activation 
of sterol 27-hydroxylase (CYP27A1) results in the production of chenodeoxycholic acid but not cholic acid (CA). This 
decrease in CA leads to reduced DCA levels, which otherwise inhibit bacterial overgrowth by displaying potent antimi-



Jeyaraman N et al. Gut-liver axis

WJGPT https://www.wjgnet.com 4 November 5, 2024 Volume 15 Issue 6

Table 1 Summary of published studies on gut microbiota and hepatic diseases

Ref. Population Disease 
focus Key findings Implications

Chen et al
[87], 2011

36 cirrhosis patients; 24 
healthy controls

Cirrhosis ↑ Proteobacteria; ↑ Fusobacteria; ↑ Enterobac-
teriacea; ↑ Veillonellacea; ↑ Streptococcaceae; ↓ 
Bacteroidetes; ↓ Lachnospiraceae

Dysbiosis due to increased Enterobacteriaceae 
and Streptococcaceae may affect the prognosis 
of cirrhosis patients

Liu et al[88], 
2012

Cirrhosis patients vs 
healthy controls

Cirrhosis ↓ Bifidobacterium; ↓ Bacteroidetes; ↑ Proteo-
bacteria; ↑ Fusobacteria; ↑ Enterobacteriaceae; ↑ 
Enterococcus

On releasing endotoxin by enterobacteriaceae, 
intestinal permeability is increased

Bajaj et al[89], 
2012

25 cirrhosis patients: 17 
with HE and 8 without 
HE; 10 healthy controls

Cirrhosis ↑ Bacteroidetes; ↑ Veillonellaceae in HE; ↑ 
Enterobacteriacea; ↑ Alcaligeneceae; ↑ 
Porphyromonadacea; ↑ Fusobacteriaceae; ↓ 
Ruminococcaceae; ↓ Lachnospiraceae

Dysbiosis was found in patients with HE 
compared to healthy individuals; 
endotoxemia, impaired cognition, and inflam-
mation in the liver were seen in patients with 
HE

Mutlu et al
[26], 2012

ALD patients vs healthy 
control

ALD ↑ Proteobacteria; ↓ Bacteroidetes; ↓ Firmicutes; ↑ 
Enterobacteriaceae; ↓ Bacteroidetes; ↓ Lactoba-
cillus

Decreased beneficial bacteria and increased 
intestinal permeability result in systemic 
endotoxemia

Zhang et al
[90], 2013

26 cirrhosis patients with 
HE; 25 cirrhosis patients 
without HE; 26 healthy 
controls

Cirrhosis ↑ Streptococcus salivarius in HE; ↑ Streptococ-
caceae; ↑ Veillonellaceae

Streptococcus salivarius was found in patients 
with HE due to increased ammonia

Wong et al
[91], 2013

NASH patients and 
healthy controls

NASH ↓ Firmicutes; ↓ Clostridiales (Faecalibacterium & 
Anaerosporobacte); ↑ Bacteroidetes (Parabac-
teroides & Allisonella)

Mouzaki et al
[92], 2013

33 NAFLD patients; 11 
steatosis patients; 22 
NASH patients; 17 
normal controls

NAFLD; 
NASH; 
steatosis

↑ C. Coccoides in NASH; ↓ Bacteroidetes in 
NASH

The relationship between Bacteroidetes and 
liver disease state was independent of increase 
in BMI 

Zhu et al[51], 
2013

22 NASH patients; 25 
obese people; 16 healthy 
controls

NASH ↑ Bacteroides (Prevotella); ↑ Proteobacteria 
(Escherichia); ↓ Firmicutes; ↓ Actinobacteria

Increased population of ethanol producing 
bacteria in patients with NASH contributed to 
disease progression; increased ethanol-
producing bacteria (Escherichia) was due to 
the use of antibiotics

Raman et al
[30], 2013

30 NAFLD patients; 30 
healthy controls 

NAFLD ↑ Proteobacteria; ↑ Firmicutes; ↓ Bacteroidetes Faecal ester volatile organic compounds could 
negatively influence the microbiome 
composition of patients with NAFLD 

Kakiyama et 
al[93],  2013

47 cirrhosis patients; 14 
healthy controls

Cirrhosis ↑ Staphylococcaeae; ↑ Enterobacteriaceae; ↑ 
Enterococcaceae; ↓ Lachnospiraceae; ↓ Rumino-
coccaceae; ↓ Clostridiales XIV; ↓ Blautia

Increased pathogenic bacteria as a result of 
gut dysbiosis in cirrhotic patients with altered 
bile acid composition

Qin et al[94], 
2014

98 cirrhosis patients; 83 
controls 

Cirrhosis ↑ Proteobacteria; ↑ Veillonella; ↑ Streptococcus; ↓ 
Bacteroidetes; ↓ Lachnospiraceae; ↓ Ruminococ-
caceae; ↓ Blautia

Oral commensals were found in the gut of 
cirrhotic patients

Bajaj et al[4,95,
96], 2014, 
2016, and 
2019

HE patients vs healthy 
control

HE due to 
cirrhosis

↑ Megasphaera; ↑ Enterococcus; ↑ Burkholderia; 
↑ Veillonellaceae; ↓ Fecalibacterium; ↓ Blautia; ↓ 
Roseburia; ↓ Dorea

Increased pathogenic bacteria are linked with 
poor cognition and inflammation

Bajaj et al[97], 
2014

Cirrhosis patients vs 
healthy controls

Cirrhosis ↑ Veillonella spp.; ↑ Streptococcus spp.; ↓ 
Bacteroidetes; ↓ Firmicutes

Grat et al[98], 
2016

15 HCC patients; 5 
patients without HCC; all 
participants with 
cirrhosis underwent liver 
transplantation

HCC ↑ E. coli; ↑ Enterobacteriaceae; ↑ Enterococcus; ↑ 
Lactobacillus; ↑ H2O2-producing Lactobacillus 
species

Increased faecal counts of E. coli were noted in 
the cirrhotic-HCC group, indicating its 
association with HCC development

Llopis et al
[27], 2016

Severe AH patients vs 
healthy control

Alcoholic  
hepatitis

↑ Bifidobacteria; ↑ Streptococci; ↑ Enterobacteria; 
↓ Clostridium leptum; ↓ Faecalibacterium 
prausnitziithan

Decreased anti-inflammatory bacteria and 
enhanced intestinal dysbiosis result in gut 
permeability which facilitates microbiota 
translocation

Chen et al
[99], 2016

30 cirrhosis patients; 28 
healthy controls

Cirrhosis ↑ Veillonella; ↑ Megasphaera; ↑ Dialister; ↑ 
Atopobium; ↑ Prevotella; ↑ Firmicutes

Raised oral commensal bacteria were found in 
duodenal mucosal microbiota of cirrhotic 
patients

Specific bacterial families were associated 
with astrocytic and neuronal MRI changes; 
gut dysbiosis in cirrhosis was linked with 
systemic inflammation, elevated ammonia 

Ahluwalia et 
al[100], 2016

87 patients with HE; 40 
healthy controls 

Cirrhosis ↑ Enterobacteriaceae; ↓ Lachnospiraceae; ↓ 
Ruminococcaceae
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levels, and neuronal dysfunction

Yang et al
[101], 2017

ALD patients vs healthy 
controls

ALD ↑ Candida; ↓ Epicoccum; ↓ Galactomyces

Dubinkina et 
al[102], 2017

ALD patients vs healthy 
controls

ALD ↑ Bifidobacterium; ↑ Streptococcus spp; ↑ 
Lactobacillus spp; ↓ Prevotella; ↓ Paraprevotella; 
↓ Alistipes

Chierico et al
[29], 2017

61 NASH/NAFLD 
patients;  
54 healthy controls

NAFLD; 
NASH

↑ Actinobacteria; ↑ Bradyrhizobium; ↑ Anaero-
coccus; ↑ Peptoniphilus; ↑ P.acnes; ↑ Enterobac-
teriaceae (Escherichia coli); ↑ Dorea; ↑ Rumino-
coccus; ↓ Bacteroidetes; ↓ Oscillospira; ↓ Rikenel-
laceae

Increased microbial diversity in 
NASH/NAFLD; decreased Bacteroidaceae 
and Bacteroides were observed in NAFLD and 
NASH, while they were increased in obese 
patients compared to controls; increased 
ethanol-producing bacteria (Enterobac-
teriaceae) in NAFL/NASH compared to 
controls

Loomba et al
[103], 2017

NAFLD patients and 
healthy controls

NAFLD ↑ Escherichia coli; ↑ Bacteriodes vulgatus; ↓ 
Ruminococcus spp.; ↓ Eubacterium rectale; ↓ 
Faecalibacterium prausnitzii

Liu et al[104], 
2018

36 cirrhosis patients; 20 
healthy controls 

Cirrhosis ↑ Firmicutes; ↓ Bacteroidetes Microbial dysbiosis in cirrhotic patients with 
Child-Pugh scores > 5 led to decreased gut 
motility

Ren et al[105], 
2019

75 early HCC patients; 40 
Liver cirrhosis patients; 
75 healthy controls

HCC ↑ Actinobacteria; ↑ Gemmiger; ↑ Parabac-
teroides; ↑ Paraprevotella; ↑ Klebsiella; ↑ 
Haemophilus; ↓ Verrucomicrobia; ↓ Alistipes; ↓ 
Phascolarctobacterium; ↓ Ruminococcus; ↓ 
Oscillibacter; ↓ Faecalibacterium; ↓ Clostridium 
IV; ↓ Coprococcus

Decreased butyrate-producing bacteria and 
increased LPS-producing bacteria observed in 
early HCC 

Ponziani et al
[106], 2019

21 NAFLD-related 
cirrhosis patients with 
HCC; 20 NAFLD related 
cirrhosis patients without 
HCC; 20 healthy controls

HCC ↑ Bacteroides; ↓ Ruminococcaceae; ↑ Bifidobac-
terium 

Increased faecal calprotectin in HCC patients 
is an indicator of inflammatory state

Piñero et al
[107], 2019

407 cirrhosis patients: 25 
with HCC; 25 without 
HCC; 25 healthy controls 

HCC ↑ Erysipelotrichaceae; ↑ Odoribacter; ↑ 
Butyricimonas; ↓ Leuconostocaceae; ↓ Fusobac-
terium; ↓ Lachnospiraceae

Decreased Prevotella in cirrhotic patients with 
HCC, is associated with activation of several 
inflammatory pathways

Ni et al[108], 
2019

68 primary HCC patients: 
(23 Stage I, 13 Stage II, 30 
Stage III, 2 Stage IV); 18 
healthy controls 

HCC ↑ Dysbiosis index Proteobacteria (Enterobacter, 
Haemophilus); ↑ Desulfococcus; ↑ Prevotella; ↑ 
Veillonella; ↓ Cetobacterium

Dysbiosis is seen in patients with primary 
HCC when compared to healthy controls

Liu et al[69], 
2019

57 HCC patients (35 with 
HBV related HCC, 22 
with non-HBV non-HCV 
related HCC); 33 healthy 
controls 

HCC ↑ Bifidobacterium; ↑ Lactobacillus; ↓ Proteo-
bacteria; ↓ Firmicutes 

Decreased anti-inflammatory and increased 
pro-inflammatory bacteria in non-HBC non-
HCV related HCC patients are positively 
correlated with alcohol consumption

Schwimmer et 
al[109], 2019

87 NAFLD patients; 37 
healthy controls 

NAFLD ↑ Bacteroidetes; ↑ Proteobacteria; ↓ Firmicutes Decreased α-diversity in NAFLD was 
associated with differences in bacterial 
abundance rather than an increase in specific 
phyla or genus; increased bacterial pro-
inflammatory products (LPS) were seen in 
patients with NAFLD

Duarte et al
[110], 2019

NASH patients; healthy 
controls

NASH ↑ Bacteroides; ↑ Proteobacteria; ↑ Enterobac-
teriaceae; ↑ Escherichia; ↓ Firmicutes; ↓ 
Actinobacteria; ↑ Klebsiella pneumoniae

Increased alcohol-producing bacteria supply a 
constant source of ROS which results in liver 
inflammation

Kravetz et al
[111], 2020

44 NAFLD patients; 29 
healthy controls

NAFLD ↓ Bacteroidetes; ↓ Prevotella; ↓ Gemmiger; ↓ 
Oscillospira

Decreased bacterial diversity in patients with 
NAFLD is associated with an increase in the 
rate of inflammation in NAFLD

Lang et al[65], 
2020

NAFLD patients and 
healthy controls

NAFLD ↓ Virus and bacteriophage diversity; ↑ 
Escherichia; ↑ Enterobacteria; ↑ Lactobacillus 
phage

Lang et al
[112], 2021

NAFLD patients and 
healthy controls

NAFLD ↑ Gemmiger; ↓ Faecalibacterium; ↓ Bacteroides; 
↓ Prevotella

Behary et al
[113], 2021

32 NAFLD-HCC patients; 
28 NAFLD-cirrhosis 
patients; 30 non-NAFLD 
controls 

HCC ↑ Proteobacteria; ↑ Enterobacteriaceae; ↑ 
Bacteroides xylanisolvens; ↑ B. caecimuris; ↑ 
Ruminococcus gnavus; ↑ Clostridium bolteae; ↑ 
Veillonella parvula; ↑ Bacteroides caecimuris; ↑ 
Veillonella parvula; ↑ Clostridium bolteae; ↑ 
Ruminococcus gnavus; ↓ Oscillospiraceae; ↓ 
Erysipelotrichaceae; ↓ Eubacteriaceae 

Increased B. caecimuris and Veillonella parvula 
distinguish NAFLD-HCC from NAFLD-
cirrhosis and non-NAFLD controls; decreased 
gut microbial α-diversity and increased SCFAs 
serum levels in NAFLD-HCC result in 
immunosuppression
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Trebicka et al
[114], 2021

Cirrhosis patients vs 
healthy controls

Cirrhosis ↑ Enterobacteriaceae; ↑ Alcaligenaceae; ↑ 
Streptococcaceae; ↑ Veillonellaceae; ↑ Fusobac-
teriaceae; ↓ Bacteroidetes; ↓ Ruminococcaceae; ↓ 
Lachnospiraceae 

Pathogenic organisms' overgrowth results in 
accelerated disease progression and 
endotoxemia which results in reduction of 
organisms that can produce SCFAs and anti-
bacterial peptides

Solé et al[115], 
2021

182 cirrhosis patients Cirrhosis ↑ Enterococcus; ↑ Streptococcus in ACLF; ↑ 
Faecalibacterium; ↑ Ruminococcus; ↑ 
Eubacterium in decompensated patients

As cirrhosis progressed from compensated to 
uncompensated to ACLF, there was a marked 
reduction in metagenomic richness

ACLF: Acute-on-chronic liver failure; ALD: Alcohol-related liver diseases; SCFAs: Short chain fatty acids; NAFLD: Non-alcoholic fatty liver disease; HCC: 
Hepatocellular carcinoma; ROS: Reactive oxygen species; LPS: Lipopolysaccharide; HCV: Hepatitis C virus; HBV: Hepatitis B virus; NASH: Non alcoholic 
steatohepatitis; HE: Hepatic encephalopathy; BMI: Body mass index.

crobial activity[46-48]. Another study observed a reduction in the secondary to primary bile acids (BAs) ratio and a 
decrease in total faecal BA concentration in the terminal stages of cirrhosis[49]. These shifts result in diminished FXR 
activation and increased damage mediated by ROS[50]. Consequently, these changes foster bacterial overgrowth and 
dysbiosis, perpetuating the vicious cycle of increased permeability, immune dysregulation, metabolic imbalance, and 
hepatocellular damage. Figure 2 illustrates the complex interactions within the gut-liver axis and the mechanisms of its 
failure, leading to liver injury.

CLINICAL IMPLICATIONS OF GUT-LIVER AXIS IN HEPATIC DISEASES
NAFLD
NAFLD has been linked to gut dysbiosis influenced by dietary and lifestyle factors. Elevated levels of Proteobacteria, 
Enterobacteriaceae, and Escherichia, which are known alcohol-producing bacteria, have been observed in patients with 
NASH[51]. These bacteria may cause liver damage by enabling the translocation of toxins through the portal circulation. 
In cases of NAFLD or NASH, there is an increase in Bacteroidetes, Proteobacteria, and Actinobacteria[24,28,29,52-54]. 
Conversely, other studies indicate an increase in Firmicutes and a decrease in Bacteroidetes, Proteobacteria, and Actino-
bacteria in NASH patients[28,29]. Moreover, the presence of metabolic syndrome in patients with NAFLD correlates with 
more severe disease due to increased Bacteroidetes and Ruminococcus[55]. A decrease in Coprococcus, Fecalibacterium, 
and Ruminococcus was noted in NAFLD patients, resulting in a reduction of their anti-inflammatory effects[55].

Alcoholic liver disease
Alcohol consumption disrupts the gut microbiota. Research involving ethanol-fed mice showed intestinal cell death, 
which increases permeability due to the deterioration of tight junctions[56]. A significant rise in endotoxemia was 
observed in alcoholics, patients with alcoholic hepatitis, and those with cirrhosis compared to the general population[57]. 
Mutlu et al[26], in 2012, noted a reduction in Bacteroidetes and Firmicutes and an increase in Proteobacteria. Severe 
alcoholic liver disease is associated with a higher proportion of Streptococci, Bifidobacteria, and Enterobacteria, and a 
reduction in anti-inflammatory microorganisms like Faecalibacterium prausnitzii[27]. Furthermore, Parasutterella excrementi-
hominis, absent in alcoholic mouse microbiota but present in non-alcoholic ones, suggests a protective role for this 
bacterium.

Liver cirrhosis
Cirrhotic patients exhibit a decline in Lachnospiraceae, Clostridia, Ruminococcaceae [Firmicutes phylum], and Bacte-
roidetes[58-60], along with an increase in pathogenic bacteria such as Veillonellaceae, Enterobacteriaceae, and Streptococ-
caceae[58,61,62]. This shift towards pathogenic bacteria leads to a reduction in SCFAs and an increase in LPS production. 
The reduced favourable microbiota is associated with decreased 7α-hydroxylation, which subsequently lowers bile acid 
levels. This reduction can facilitate the translocation of oral commensals like Streptococcus salivarius[61] and Veillonella 
species[63] into the gut, driven by urease production, leading to endotoxemia and exacerbating liver inflammation, which 
may progress to steatosis, hepatitis, and fibrosis.

Hepatocellular carcinoma
The LPS-TLR4 axis is implicated in promoting carcinogenesis via activation of stellate and Kupffer cells, chronic inflam-
mation, and fibrosis, though it does not initiate carcinogenesis[64]. Another pathway involves the activation of the 
nuclear factor-κB pathway through TLR-4, which stimulates the release of inflammatory cytokines such as IL-1B and IL-
18[65,66]. LPS can also trigger epithelial-mesenchymal transition[67]. A common alteration in the gut microbiota in 
hepatocellular carcinoma (HCC) is an increased Firmicutes/Bacteroidetes ratio[68]. There is also an elevation in inflam-
matory bacteria like Enterococcus, Escherichia, and Shigella, alongside a reduction in Faecalibacterium, Ruminococcus, 
and Ruminoclostridium in HCC patients[69]. Additionally, Zheng et al[66] found a decrease in butyrate-producing 
bacteria such as Clostridium, Coprococcus, and Ruminococcus, and an increase in LPS-producing bacteria like Neisseria, 
Enterobacteriaceae, and Veillonella in patients with HCC and cirrhosis. These microbial shifts could serve as potential 
biomarkers for HCC.
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Figure 1 Role of gut microbiota in maintaining liver homeostasis. IgA: Immunoglobulin A; IL: Interleukin; MAMP: Microbe-associated molecular patterns; 
PAMP: Pathogen-associated molecular patterns; TGF: Transforming growth factor; TNF: Tumor necrosis factor.

Autoimmune hepatitis
The pathogenesis of this condition is primarily dependent on the interplay between genetic and environmental factors. It 
has been found that genetically susceptible individuals has HLA-DRB1 0301 and HLA-DRB1 0401 genotypes which, on 
interaction with environmental factors such as viruses (cytomegalovirus, hepatitis A, B, C, and E viruses, and Ebstein-
Barr virus) or drugs (minocycline), leads to a dysregulated pro-inflammatory response where the antigen presenting cells 
set off a cascade of events where helper T cells get activated. Activated helper T cells release a stream of cytokines which 
in turn activate cytotoxic T cells to release a group of cytokines resulting in an antibody mediated cell toxicity, eventually 
leading to hepatocellular injury.

Another mechanism in the development of autoimmune hepatitis is through molecular mimicry where the antibodies 
directed against environmental antigens become self-directed to self-antigens due to similarities of environmental 
antigens with self-antigens as per Floreani et al[67]. In individuals with AIH, there were significant reductions in species of 
Bifidobacterium and Lactobacillus, which resulted in increased gut permeability and enhanced translocation of bacteria 
indicated by increased lipopolysaccharide levels that were positively correlated with the disease severity as per Lin et al
[70].

Viral hepatitis and other liver diseases
These pathologies show an increased association between disease progression and dysbiosis. A decrease in Bacteroides, 
Lactobacillus, Bifidobacterium and an increase in Enterococcus and Enterobacteriaceae, which resulted in altered gut 
microbiome, were seen in chronic hepatitis B. With limited studies on hepatitis C and gut dysbiosis, it was found that 
there was a reduction in alpha-diversity and altered gut microbiome. One of the reasons for altered microbiome is that a 
reduction in bile production leads to an increase in pathogenic species in the gut[71-73].

Another interesting correlation was observed between primary sclerosing cholangitis (PSC) and gut dysbiosis. 
According to Bajer et al[74], in patients with PSC and PSC-IBD there was an increase in Veillonella, Enterococcus, 
Clostridium, Streptococcus, Rothia, and Hemophilus and a decrease in Coprococcus. This observation is explained by the 
fact that the pro-inflammatory state set by PSC leads to increased gut permeability and the products of bacteria such as 
SCFAs and bile acids leads to disease progression[74].
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Figure 2 Dysbiotic gut-liver axis resulting in liver damage. IL: Interleukin; LPS: Lipopolysaccharide; M: Macrophage; KCs: Kupffer cells; DAMP: Damage-
associated molecular patterns; PAMP: Pathogen-associated molecular patterns; TNF: Tumor necrosis factor.

Figure 3  Therapeutic potential of intestinal microbiome in liver disease management.

In primary biliary cholangitis (PBC), a study by Lv et al[75] stated that there was an increase in Veillonella, Bifidobac-
terium, Neisseria, and Klebsiella and a decrease in Ruminococcus, Bacteroides eggerthii, and Hallella. But further studies 
are required for establishing treatments that alter the gut microbiome in patients with PBC and PSC/PSC-IBD.

THERAPEUTIC POTENTIALS AND INTERVENTIONS
Targeted changes in human microbiota are achieved through probiotics, prebiotics, and synbiotics as shown in Figure 3.

Probiotics
Probiotics, which are live organisms, are administered as supplements to supplant pathogenic bacteria. Research has 
demonstrated that a mixture of Lactobacillus, Streptococcus thermophilus, and Bifidobacteria ameliorated steatosis in mice 
induced by a high-fat diet[76]. Lactobacillus GG was shown to mitigate intestinal oxidative stress, leakage, and liver 
damage in rat models of alcoholic steatohepatitis[77]. Additionally, combinations of probiotics have been effective in 
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slowing the progression of HCC in mice by reducing TH17 cells[78]. Akkermansia muciniphila has been noted to strengthen 
tight junctions and maintain intestinal permeability in alcoholic steatohepatitis models[79]. There is also evidence 
suggesting that probiotic therapy can enhance the efficacy of immunotherapy in cancer patients[80].

Prebiotics
Studies have shown that pectin can modify the intestinal microbiota in mice, prevent steatosis, and decrease inflam-
mation. Common prebiotics include oligosaccharides, polyunsaturated fatty acids, and polyphenols[81]. A meta-analysis 
involving 1309 patients with NAFLD reported significant reductions in body mass index, liver enzymes, serum chole-
sterol, and triglycerides following prebiotic administration[82].

Synbiotics
The combined use of prebiotics and probiotics, known as synbiotics, has shown enhanced benefits. According to Hadi et 
al[83], synbiotic consumption led to improvements in lipid profiles and metabolic hepatic steatosis. Malaguarnera et al[84] 
found that after 6 mo of administering Bifidobacterium longum and Fructo-oligosaccharide to 66 patients with NASH, there 
were significant reductions in serum AST, LPS, inflammatory mediators, fat denaturation, and the NASH activity index.

Faecal microbiota transplantation
Faecal microbiota transplantation (FMT) aims to replace the intestinal flora with a healthier one, improving gut 
permeability and reducing endotoxemia and inflammatory molecules through the increased production of anti-microbial 
peptides. In a study by Ferrere et al[85], fecal bacteria from alcohol-resistant mice were transplanted to alcohol-sensitive 
receptor mice, effectively preventing alcohol-induced intestinal disorders and fatty liver hepatitis. This treatment altered 
the bacterial composition, decreasing Bacteroides and increasing Actinobacteria and Firmicutes. In a recent randomized, 
double-blind trial, patients with alcohol-related liver disease and cirrhosis received FMT from a donor with a Lachnos-
piraceae and Ruminococcaceae rich microbiota. Results from this trial showed reductions in IL-6 and LPS-binding protein 
levels and an increase in butyrate/isobutyrate levels on day 15 in the FMT group, in contrast to the control and placebo 
groups[86](Table 2).

CHALLENGES AND FUTURE DIRECTIONS
The therapeutic landscape for liver diseases is complex, due to challenges such as tissue specificity, drug resistance, and 
selectivity, complicating the establishment of clear relationships between specific liver conditions and causative 
organisms. Current research often relies on animal models, primarily mice, which differ significantly in gut microbial 
diversity from humans. This variation limits the direct applicability of findings to human models. Although advan-
cements in microbial analysis have begun to elucidate the relationships between gut metabolites and specific microbes, 
many metabolites remain unlinked to distinct microbial agents. Deeper microbial and metabolomic investigations are 
imperative for understanding the molecular mechanisms underlying liver pathology. The variability in gut microbiota 
compositions among individuals, influenced by genetic, dietary, and environmental factors, poses a significant challenge 
in translating microbiota research into clinical applications. This diversity necessitates the development of personalized 
therapeutic interventions tailored to individual microbiome profiles. Most studies to date have been cross-sectional, 
restricting the ability to establish causality between microbiota changes and liver disease progression. Longitudinal and 
multi-centric studies are crucial for tracking microbiota evolution over time and validating findings across diverse 
populations to enhance the generalizability of the research.

The current understanding of how microbial metabolites affect liver pathology is limited, and further research is 
needed to identify key microbial strains or metabolites critical in disease progression. This could pave the way for 
targeted therapies. Moreover, there is a pressing need for non-invasive biomarkers that reflect the gut-liver axis accu-
rately, facilitating early disease diagnosis and monitoring. Advances in metagenomic and metabolomic technologies are 
pivotal in identifying such biomarkers by profiling microbial communities and their metabolic outputs. The clinical 
efficacy of microbiota-targeted therapies, such as probiotics, prebiotics, and synbiotics, varies due to differences in 
formulations, dosages, and patient demographics. Standardized intervention protocols and rigorous clinical trials are 
essential to ascertain the most effective therapeutic compositions. Furthermore, the safety of therapies like FMT must be 
thoroughly assessed to mitigate risks associated with the transfer of pathogenic organisms or undesirable genetic 
materials. Establishing stringent regulatory frameworks and standardized protocols will be critical as these therapies 
progress toward routine clinical use. Integrating microbiota-modulating therapies with conventional liver disease 
treatments—such as pharmacotherapy and lifestyle interventions—may enhance therapeutic outcomes. It is also vital to 
explore how these therapies interact with emerging treatments like gene therapy and immunotherapy to adopt a holistic 
approach to managing hepatic diseases. Additionally, public health initiatives should integrate gut microbiota research 
findings to develop guidelines that promote a microbiota-friendly lifestyle through dietary recommendations, lifestyle 
modifications, and urban planning, thereby preventing liver diseases at a population level and alleviating the broader 
public health burden.
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Table 2 Potential therapeutic interventions targeting the gut-liver axis

Interventions Mechanism of action Targeted 
disease Clinical outcomes Ref.

Prebiotics (pectin) Restore Bacteroides level Alcoholic 
liver 
disease

Control dysbiosis Ferrere et al
[85], 2017

Prebiotics (Fructo-oligosac-
charide)

Promote fatty acid oxidation NAFLD Reduced hepatocyte damage and inflammation Matsumoto et al
[116], 2017

Probiotics (E. coli Nissle 
strain)

↑ Lactobacillus species; ↑ Bifidobac-
terium species; ↓ Proteus hauseri; ↓ 
Citrobacter species; ↓ Morganella 
species

Cirrhosis 
(humans)

Significant improvement in gut microbiome with 
decreased endotoxemia, bilirubin, and ascites

Lata et al[117], 
2007

Probiotics (Lactobacillus reuteri 
GMNL-263)

↑ Bifidobacteria; ↑ Lactobacilli; ↓ 
Clostridia

Hepatic 
steatosis 
(rats)

↓ Blood glucose levels, TNF-α and IL-6 
production by adipose tissue 

Hsieh et al
[118], 2013

Probiotics ↑ Parabacteroide; ↑ Allisonella; ↓ 
Faecalibacterium; ↓ Anaerosporobacter

NASH 
(humans)

↑ Bacteroidetes ↓ Firmicutes Wong et al[91], 
2013

Probiotic: VSL#3 (8 probiotic 
mixture)

GLP-1 NAFLD Decrease BMI and increase GLP-1 and activated 
GLP1

Alisi et al[119], 
2014

Probiotics (VSL #3) ↑ Lactobacillus species Cirrhosis 
(humans)

Reduced hospitalization due to HE with daily 
intake of probiotic for 6 mo

Dhiman et al
[120], 2014

Probiotics (Lactobacillus GG) ↑ Firmicutes species; ↓ Enterobac-
teriaceae; ↓ Porphyromon adacea;

Cirrhosis 
(humans)

↓ Endotoxemia and TNF-α after 8 wk; ↓ dysbiosis 
due to decreased Enterobacteriaceae and 
increased Firmicutes species

Bajaj et al[95], 
2014

Probiotics (cholesterol 
lowering probiotics and 
anthraquinone from Cassia 
obtusifolia L)

↑ Bacteroides; ↑ Lactobacillus P; ↑ 
Arabacteroides; ↓ Oscillospira

NAFLD 
(rats)

Improve intestinal barrier and decrease 
endotoxemia and inflammatory cytokines

Mei et al[121], 
2015

Probiotics (Prohep: Lactoba-
cillus rhamnosus GG (LGG), 
viable Escherichia coli Nissle 
1917 (EcN), and heat-
inactivated VSL#3)

↑ Alistipes; ↑ Butyricimonas; ↑ 
Mucispirillum; ↑ Oscillibacter; ↑ 
Parabacteroides; ↑ Paraprevotella; ↑ 
Prevotella; ↑ Bacteroidetes; ↓ 
Firmicutes; ↓ Proteobacteria

HCC 
(mice)

↑ Anti-inflammatory bacteria; ↓ Th17-inducing 
bacteria and segmented filamentous pro inflam-
matory bacteria

Li et al[77], 2016

Probiotics ↑ Ruminococcus; ↑ Saccharibacteria 
(TM7 phylum); ↓ Verrucomicrobia; ↓ 
Veillonella

NAFLD 
(rats)

↓ TC, TG, lipid deposition, and inflammation Liang et al
[122], 2019

Six probiotic mixtures Gut microbiota NAFLD Reduce intrahepatic fat and body weight Ahn et al[123], 
2019

Probiotics (multispecies 
strain)

↑ Lactobacillus (brevis, salivarius, 
lactis); ↑ Faecalibacterium prausnitzii; ↑ 
Syntrophococcus sucromutans; ↑ Alistipes 
shahii; ↑ Bacteroides vulgatus; ↑ 
Prevotella

Cirrhosis 
(humans)

Gut microbiome enrichment in compensated 
cirrhosis patients and improved gut barrier 
function

Horvath et al
[124], 2020

Probiotics (Bifidobacterium 
animalis spp. Lactis 420)

↑ Lactobacillus; ↑ Alistipes; ↑ Rikenella; 
↑ Clostridia; ↓ Bacteroides; ↓ Rumino-
coccus

HCC 
(Mice)

Reduced liver injury and improved immune 
homeostasis via: Increment in tight junction 
proteins; ↓ Serum endotoxin levels; ↑ fecal 
SCFAs; ↑ α-diversity regulation of pro-inflam-
matory cytokines; (-) RIP3-MLKL signalling 
pathway of liver macrophages

Zhang et al
[125], 2020

Probiotics (Bifidobacterium 
and Lactobacillus)

↑ Bacteroidetes; ↑ Bifidobacterium; ↑ 
Bacteroides; ↑ Clostridium; ↑ Rumino-
coccus; ↑ Anaerostipes; ↑ Blautia; ↓ 
Firmicutes; ↓ Faecalibacterium; ↓ 
Helicobacter; ↓ Staphylococcus

HCC 
(Mice)

↑ Treg cell differentiation; ↑ SCFAs; ↓ infiltration 
of inflammatory cells in the liver; ↓ ALT, AST; ↓ 
Th1, Th17 cells; (-) LPS translocation to the liver; 
(-) activation of the TLR/NF-kB pathway

Liu et al[126], 
2021

Probiotic Gut barrier NAFLD Mohamad et al
[127], 2021

FMT ↑ Lactobacillaceae; ↑ Bifidobac-
teriaceae; ↑ Bacteroidetes; ↑ Firmicutes

HE Improves dysbiosis and SCFAs Bajaj et al[86], 
(2017)

FMT Gut microbiota Cirrhosis Reduced systemic inflammation Bajaj et al[128], 
2019

Allogenic FMT: ↑ Ruminococcus ↑ 
Eubacterium hallii; ↑ Faecalibacterium; ↑ 

FMT NAFLD Decreased steatosis and liver inflammation and 
enhanced liver endothelial function

Witjes et al
[129], 2020
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Prevotella copri; Autologous FMT: ↑ 
Lachnospiraceae

FMT Gut microbiota NAFLD Reduced intestinal permeability Craven et al
[130], 2020

FMT ↑ Bifidobacterium; ↑ Lactobacillus; ↓ 
Escherichia coli

HCC Decreased AST, ALT, and serum IgG levels and 
prevented progression of alcohol induced 
hepatitis

Liang et al
[131], 2021

FMT Gut microbiota NAFLD Reduces gut dysbiosis and decreases fat accumu-
lation

Xue et al[132], 
2022

Synbiotics [Bifidobacterium 
longum and Fructo-oligosac-
charide]

Gut microbiota NASH Reduced liver inflammation and hepatocyte 
damage

Malaguarnera 
et al[84], 2012

Synbiotics 
[Bifidobacterium animalis and 
inulin]

Gut microbiota NAFLD Improved steatosis and liver enzyme levels Lambert et al
[133], 2015

Synbiotics Gut microbiota NAFLD Increased levels of Bifidobacterium and 
Faecalibacterium, and decreased Oscillibacter 
and Alistipes

Scorletti et al
[134], 2020

NAFLD: Non-alcoholic fatty liver disease; NASH: Non alcoholic steatohepatitis; HCC: Hepatocellular carcinoma; FMT: Faecal microbial transplantation; 
HE: Hepatic encephalopathy; TC: Total cholesterol; TG: Triglycerides; SCFAs: Short chain fatty acids; LPS: Lipopolysaccharide; GLP: Glucagon like 
peptide.

CONCLUSION
Our article highlights the potential of gut microbiome manipulation as a transformative approach to liver disease 
treatment, with fewer side effects and complications compared to traditional methods. Therapeutic strategies such as the 
administration of probiotics, prebiotics, synbiotics, and FMT have shown promise in modulating the gut microbiota to 
enhance liver health. As we move forward, the integration of these interventions into personalized medicine is essential, 
utilizing detailed individual microbiome profiles to tailor therapies. The future of liver disease management will be 
shaped by continued research and innovation. Longitudinal studies and clinical trials are imperative to validate the 
therapeutic potentials identified and to refine these strategies, propelling us into a new era of precision medicine in 
hepatology.
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